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1 Introduction

The envelope theorem is a central tool for comparative statics of unconstrained and constrained
optimization problems. It states that, at an optimum, the impact of a parameter perturbation
on the value of an optimization problem’s objective is solely attributed to its direct effect since
optimization ensures that the indirect effect attributed to changes in the choice variables is zero.
But what can be said about the impact of a parameter perturbation on the value of the objective
away from an optimum?

Away from an optimum, the impact of a parameter perturbation on the value of the objective
depends on both i) its direct effect, defined as the change in the value of the objective not attributed
to changes in the choice variables, and ii) its indirect effect, defined as the change in the value of
the objective attributed to changes in the choice variables. If a parameter perturbation exclusively
impacts the objective function but not the constraints, its direct effect can be unambiguously
attributed to the change in the value of the objective that would have ensued if keeping choice
variables fixed. However, in general, the split between the direct and indirect effects is ambiguous.
In particular, in problems in which the parameter perturbation impacts a binding constraint, it is
impossible to define a notion of the direct effect of the perturbation in which the choice variables
remain fixed since choice variables must necessarily adjust to satisfy the constraint.1 In this case,
it is possible to define multiple valid notions of the direct (and indirect) effect of the perturbation,
as we illustrate in Section 2.3.

The main contribution of this paper is to show that there exists an unambiguous notion
of the direct effect (in which choice variables remain fixed) of parameter perturbations for
constrained optimization problems with linearly homogeneous constraints, that is, constraints that
are homogeneous of degree 1. Since our result characterizes the impact of a parameter perturbation
on the value of an optimization problem’s objective — although away from an optimum — we refer
to it as a “non-envelope theorem”, to distinguish it from standard envelope theorems, which only
apply at an optimum.

Our result hinges on the fact that Euler’s theorem for homogeneous functions makes it possible
to reformulate linearly homogeneous constraints as constraints on shares, rather than levels. Hence,
by performing a change of variables from levels to shares, it is possible to translate a parameter
perturbation that impacts a binding constraint into a parameter perturbation that solely impacts
the objective function. And in the latter case, the direct effect of the perturbation can be
unambiguously attributed to the change in the value of the objective in which choice variables
— shares in the reformulated problem — remain fixed.

1Formally, if the constraint of an optimization problem is g (x1, x2) = θ, for some function g (·) with ∂g
∂x1
6= 0 and

∂g
∂x2
6= 0 and a parameter θ, it is impossible to construct perturbations of θ in which the choice variables x1 and x2

remain fixed. That is, in response to a dθ perturbation: ∂g
∂x1

dx1 + ∂g
∂x2

dx2 = dθ. Hence, whenever dθ 6= 0 it must be
that either dx1 6= 0 or dx2 6= 0, or both.
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The body of this short paper contains one formal theorem and four applications.2 Theorem
1 formally characterizes the direct and indirect effects of a parameter perturbation on the value
of the objective for an optimization problem in which all choice variables are linked via a linearly
homogeneous constraint. The usefulness of our contribution lies in whether having a clear notion
of the direct effect of a perturbation — that is, the change in the value of the objective induced
by a parameter perturbation not attributed to changes in choice variables — has practical value in
interesting economic applications. With that goal in mind, we apply the non-envelope theorem
result to four economic applications. Our first and second applications consider single-agent
optimization problems. In this case, the non-envelope result is useful to study perturbations when
agents are behavioral, failing to fully optimize. Our third and fourth applications are planning
problems. In this case, the non-envelope result is useful to study perturbations to inefficient
allocations.

While the nature of the objective and constraints in each application is different, it is possible
to systematically use Theorem 1 to define the direct impact on the value of the objective for any
perturbation. The applications highlight that the economic nature of the shares needed to construct
the non-envelope result substantially differs across applications (expenditure shares, input shares,
consumption shares, and factor use shares), but all follow from the linear homogeneity of the
relevant constraints.

Our first application considers a classical demand theory problem, in which a consumer decides
how to spend a fixed amount of wealth among many different goods. The non-envelope theorem
characterizes the direct change in consumer welfare induced by marginal changes in i) wealth and
ii) goods prices, even when consumers are not optimizing. Our second application considers a
classical cost minimization problem, in which a firm decides how to choose inputs to minimize the
cost of producing a given amount of output. The non-envelope theorem allows us to characterize
the direct change in firm costs induced by marginal changes in i) output and ii) factor prices, even
when firms are not optimizing. In the consumer case, our result may be particularly helpful in cases
in which individual choices do not emerge from maximizing experienced utility, but are determined
by rules-of-thumb or other forms of decision utility (Chetty, 2015; Bernheim and Taubinsky, 2018).
Similarly, in the cost minimization case, our result can be used to define notions of marginal cost
when firms do not make choices that lead to minimizing costs (Heidhues and Kőszegi, 2018).

Our third application considers a planning problem in an exchange economy in which a planner
decides how to allocate a fixed amount of many different goods across different individuals. The non-
envelope theorem allows us to characterize the direct welfare impact of changes in the aggregate
endowment of goods, regardless of whether the allocation of consumption across consumers is

2For clarity of exposition, we present the formal result in Section 2 for a problem with a single linearly homogeneous
constraint. It is straightforward to extend the logic of our result to problems with multiple linearly homogeneous
constraints, as in Applications 3 and 4 in Section 3. See Dávila and Schaab (2023a) for how the non-envelope result
presented in this paper can be repeatedly applied in a rich model with many linearly homogeneous constraints.
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efficient or not. This application illustrates how our result can be used to decompose efficiency
gains into gains due to better allocating goods among individuals and gains due to having more of
the different goods. Our fourth and final application considers a planning problem in a production
economy. In this case, the non-envelope theorem allows us to characterize the direct welfare impact
of changes on technology or factor supplies, even when factors of production are misallocated across
uses. This type of comparative static exercises is central to the work on factor reallocation and
misallocation, as in Hsieh and Klenow (2009), Acemoglu and Restrepo (2018), and Baqaee and
Farhi (2020), among many others.

Related literature. Our result is most connected to classical formulations of the envelope
theorem, as in Samuelson (1947), Silberberg (1974), or Benveniste and Scheinkman (1979), among
others. Envelope theorems are typically stated in mathematical economic textbooks — see, for
instance, Simon and Blume (1994), Corbae, Stinchcombe and Zeman (2009), or Sydsaeter et al.
(2016) — or in mathematical appendixes, like that of Mas-Colell, Whinston and Green (1995). See
Milgrom and Segal (2002) and Sinander (2022) for formulations of the envelope theorem and its
converse under minimal assumptions. While it is common to formulate models in terms of shares
rather than levels, we are unaware of any existing work showing that it is possible to systematically
define an unambiguous notion of the direct effect of a parameter perturbation on the value of an
optimization problem by reformulating models with linearly homogeneous constraints in terms of
shares.

2 Non-Envelope Theorem

2.1 Optimization Problem

We consider an optimization problem with a finite number L > 1 of choice variables, given by
(x1, . . . , x`, . . . , xL). The objective function is denoted by f : RL → R, where V denotes the value
of the objective, as in

V = f (x1, . . . , x`, . . . , xL; θ) . (1)

This problem is subject to an equality constraint of the form

g (x1, . . . , x`, . . . , xL; θ) = b (θ) , (2)

where g : RL → R, b : R → R, and where θ ∈ R denotes a perturbation parameter.3 We assume
that ∂g

∂θ R 0 and db
dθ R 0, as well as ∂f

∂x`
R 0 and ∂g

∂x`
6= 0, ∀`. We assume that the problem is

well-behaved and the solution is interior, although it is straightforward to allow for non-negativity
3Our analysis applies unchanged to scenarios with binding inequality constraints. Note that we could have set

b (θ) = c, with c 6= 0, without loss of generality. Since constraints in many applications take the form g (·) = b (θ), we
have decided to keep the perturbation parameter θ on both sides of the constraint.
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constraints. A perturbation of this problem is defined as a change in θ, dθ, and changes in the
choice variables, dx1

dθ through dxL
dθ , that satisfy the constraint in (2).

2.2 Envelope Theorem

Standard arguments imply the following optimality conditions:

∂f
∂x1
∂g
∂x1

= . . . =
∂f
∂x`
∂g
∂x`

= . . . =
∂f
∂xL
∂g
∂xL

. (3)

Moreover at an optimum, the envelope theorem ensures that the change in the value of the objective
induced by a perturbation dθ is given by

dV

dθ
= ∂f

∂θ
+

∂f
∂x`
∂g
∂x`

(
db

dθ
− ∂g

∂θ

)
, ∀`, (4)

where optimality in (3) ensures that dV
dθ can be read off

∂f
∂x`
∂g
∂x`

for any choice variable.

The envelope theorem is useful because it establishes that the indirect effect of the perturbation
— attributed to the adjustment of choice variables dx1

dθ through dxL
dθ — is precisely zero. That is,

it concludes that none of the change in the value of the objective dV
dθ is attributed to changes in

the choice variables, even when dx1
dθ through dxL

dθ are non-zero. Therefore, the envelope theorem
unambiguously characterizes the direct effect of a perturbation on the value of the objective, given
by (4).

2.3 Direct and Indirect Effects Away from an Optimum

But what can be said away from an optimum? Is it possible to unambiguously characterize the
contribution to the change in the value of the objective not attributed to changes in the choice
variables, that is, the direct effect of a perturbation, perhaps with some qualifications?

In general, the change in the value of the objective induced by a perturbation dθ for the
optimization problem defined in (1)-(2) must satisfy

dV

dθ
= ∂f

∂x1

dx1
dθ

+ . . .+ ∂f

∂xL

dxL
dθ

+ ∂f

∂θ
, (5)

as well as
∂g

∂x1

dx1
dθ

+ . . .+ ∂g

∂xL

dxL
dθ

+ ∂g

∂θ
= db

dθ
. (6)

It should be evident that by solving for any dx`
dθ in (6) and substituting in (5), it is possible to find

L different and equally valid characterizations of dV
dθ . For instance, if we solve for and substitute
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in dx1
dθ , we can express dV

dθ as

dV

dθ
= ∂f

∂θ
+

∂f
∂x1
∂g
∂x1

(
db

dθ
− ∂g

∂θ

)
︸ ︷︷ ︸

direct effect

+

 ∂f
∂x2
∂g
∂x2

−
∂f
∂x1
∂g
∂x1

 ∂g

∂x2

dx2
dθ

+ . . .+

 ∂f
∂xL
∂g
∂xL

−
∂f
∂x1
∂g
∂x1

 ∂g

∂xL

dxL
dθ︸ ︷︷ ︸

indirect effect

. (7)

However, there are many other valid formulations of dVdθ , each associated with different direct and
indirect effects of the perturbation.4 In fact, any linear combination of the L possible expressions
for dV

dθ after substituting each of x1 through xL is equally valid.
At this point, it may seem that it is not possible to make further progress. However, note that

whenever dbdθ−
∂g
∂θ = 0 (typically, dbdθ = ∂g

∂θ = 0), the direct effect of any perturbation is unambiguously
given by ∂f

∂θ . Intuitively, when a perturbation does not directly impact the constraint, it is possible
to unambiguously determine what is the change in the value of the objective that would have ensued
if choice variables did not change, that is, assuming that dx1

dθ = . . . = dxL
dθ = 0. Hence, this logic

implies that there exists a natural counterpart of the envelope theorem away from an optimum
for parameter perturbations that exclusively impact the objective but not the constraints, that is,
when ∂f

∂θ 6= 0 but db
dθ −

∂g
∂θ = 0. Therefore, if we can formulate an optimization so that db

dθ −
∂g
∂θ = 0,

there will be an unambiguous characterization of the direct effect of a parameter perturbation.

2.4 Non-Envelope Theorem

Whenever the constraint function g (·) is linearly homogeneous in the choice variables, i.e.,
homogeneous of degree 1, it can be reformulated in terms of shares. This change of variables
is useful because the constraint of the reformulated problem does not depend on the perturbation
parameter θ. This logic allows us to unambiguously define the direct and indirect effects of a
perturbation in Theorem 1, which presents the main result of this paper.

Theorem 1. If the constraint function, g (·), is linearly homogeneous in the choice variables, it is
possible to reformulate the optimization problem defined by (1)-(2) in terms of shares ξ`, given by

ξ` =
∂g
∂x`

b (θ)x`, (8)

4If we instead solve for and substitute in dxL
dθ

, we can express dV
dθ

as

dV

dθ
= ∂f

∂θ
+

∂f
∂xL

∂g
∂xL

(
db

dθ
− ∂g

∂θ

)
︸ ︷︷ ︸

direct

+

(
∂f
∂x1
∂g
∂x1

−
∂f
∂xL

∂g
∂xL

)
∂g

∂x1

dx1

dθ
+ . . .+

(
∂f

∂xL−1
∂g

∂xL−1

−
∂f
∂xL

∂g
∂xL

)
∂g

∂xL−1

dxL−1

dθ︸ ︷︷ ︸
indirect

.
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ensuring that the constraint of the reformulated problem can be written as

∑
`

ξ` = 1. (9)

The change in the value of the objective induced by a parameter perturbation can thus be expressed
as

dV

dθ
= dV non-�

dθ
+ dV ξ

dθ
,

where

dV non-�

dθ
= ∂f

∂θ
+
∑
`

∂f
∂x`
∂g
∂x`

∑
m

Ψ`m

ξmdb (θ)
dθ

− xm
∂
(
∂g
∂xm

)
∂θ

 (direct effect) (10)

dV ξ

dθ
=
∑
`

∂f
∂x`
∂g
∂x`

b (θ)
∑
m

Ψ`m
dξm
dθ

, (indirect effect) (11)

and where Ψ`m, defined in (38), is exclusively a function of x`
∂g
∂xm

∂
(
∂g
∂xm

)
∂x`

, ∀`,m.

Theorem 1 exploits Euler’s homogeneous function theorem to express the constraint in terms of
shares, defined in (8). The reformulated constraint in terms of shares does not depend directly on θ.
Hence, given the logic outlined above, there exists a unique way of attributing changes in the value
of the objective to i) changes in choice variables expressed in shares, defining the indirect effect in
(11); and ii) its complement, the direct effect in (10). Intuitively, the direct/non-envelope effect
corresponds to the change in the value of the objective induced by a parameter perturbation that is
not attributed to changes in the shares ξ`. Through the lens of Theorem 1, the direct/non-envelope
effect can be interpreted as the precise combination of the direct effects in the original problem
identified above when substituting a single dx` — say in equation (7) — that ensures that shares
remain fixed.

When the constraint is not only linearly homogeneous but linear, that is, it can be written as

∑
g` (θ)x` = b (θ) ,

where g` (θ) does not depend on any choice variable, dV non-�

dθ takes the simpler form:

dV non-�

dθ
= ∂f

∂θ
+
∑
`

∂f
∂x`
∂g
∂x`

(
ξ`
db (θ)
dθ

− x`
dg` (θ)
dθ

)
. (12)

Equation (12) illustrates how the direct effect of tightening or loosening the constraint via db(θ)
dθ

can be interpreted as a share-weighted average of the direct effects in the original problem when
substituting each choice variable at a time, as in (7). Similarly, the direct effect of varying g` (θ)
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via dg`(θ)
dθ can be interpreted as a particular combination of the aforementioned direct effects that

ensures that shares remain fixed. The corrections introduced by Ψ`m in (11) simply account for
the fact that in the general linearly homogeneous case ∂g

∂x`
is in turn a function of x1 through xL.

3 Applications

We now apply the non-envelope result to four canonical optimization problems in economics.
While the nature of the objectives and constraints in each application is different, it is possible
to systematically use Theorem 1 to define the direct impact on the value of the objective for any
perturbation. The applications highlight that the economic nature of the shares needed to construct
the non-envelope result substantially differs across applications (expenditure shares, input shares,
consumption shares, and factor use shares), but all follow from the linear homogeneity of the
relevant constraints.

Instead of trying to preserve the notation for objective and constraint functions used in Section
2 of this paper, we adopt notation for each application that is closer to how each problem is typically
introduced in textbooks, for instance, Mas-Colell, Whinston and Green (1995). We hope that this
choice facilitates the exposition.

3.1 Consumer Demand Problem

In our first application, a consumer with initial wealth w chooses a bundle of L goods, c1 through
cL, to maximize utility

V = u (c1, . . . , c`, . . . , cL) , (13)

subject to a budget constraint that is linear in the choice variables

p1c1 + . . .+ p`c` + . . .+ pLcL = w, (14)

where prices p1 through pL are taken as given.
Following Theorem 1, it is possible to define expenditure shares for each good as

ξ` = p`c`
w

.

This allows us to reformulate the budget constraint as

∑
`

ξ` = 1. (15)
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In this case, the objective function can be written in terms of shares as

u

(
ξ1w

p1
, . . . , ,

ξ`w

p`
. . . ,

ξLw

pL

)
. (16)

Maximizing (13) subject to (14) is thus equivalent to maximizing (16) subject to (15). In the first
formulation, the agent chooses the amount of each good, while in the second one the agent chooses
the expenditure shares of each good directly. As explained in Section 2, the key difference between
both formulations for our purposes is that in the latter the parameters of the optimization problem
are in the objective, rather than the constraint.

Non-Envelope Result. We can directly apply Theorem 1 to express the welfare change of the
consumer associated with a general perturbation in which w and p` change as

dV =
∑
`

∂u
∂x`

p`
(ξ`dw − x`dp`)︸ ︷︷ ︸

=dV non-� (direct effect)

+
∑
`

∂u
∂x`

p`
wdξ`.︸ ︷︷ ︸

=dV ξ (indirect effect)

(17)

The direct/non-envelope term characterizes the contribution of changes in wealth, dw, and prices,
dp`, to the change in the consumer’s utility that is not attributed to changes in expenditure shares,
dξ`. For changes in wealth, the direct/non-envelope term captures how much the consumer values a
unit of wealth when spent according to the expenditure shares ξ`.5 Intuitively, consider a scenario
in which a consumer receives an extra dollar of wealth. At an optimum, the value of spending
the dollar on any good defines the marginal value of the transfer since the consumer is indifferent
spending that dollar on any good — that is precisely the condition for optimization, which also
yields the envelope theorem. But what if the agent is not optimizing, perhaps because he/she follows
a rule-of-thumb or displays other behavioral biases (Chetty, 2015; Bernheim and Taubinsky, 2018)?

Even in those cases, Theorem 1 provides a well-defined notion of the marginal value of the dollar
in which the agent spends it respecting expenditure shares. This notion is useful because it ensures
that the consumer’s behavior, when formulated in terms of expenditure shares, is unchanged, even
though the level of consumption and the total expenditure of each good must change with the
wealth transfer.

For changes in prices (say of good `), the direct/non-envelope term captures how much the
consumer has to change good `’s consumption so that the existing expenditure shares remain
constant. Once again, the non-envelope result ensures that the consumer’s behavior, when
formulated in terms of consumption shares, is unchanged in response to changes in prices, even
though the level of consumption changes.

5While dV in (17) is expressed in utils, it can be trivially translated into money-metric form by dividing by the
marginal utility of consuming any good or bundle.
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3.2 Cost Minimization Problem

In our second application, a firm that faces (and takes as given) input prices w1 through wL chooses
a combination of inputs x1 through xL to minimize costs

C = w1x1 + . . .+ wLxL, (18)

subject to a linearly homogeneous production function

g (x1, . . . , xL) = q. (19)

Following Theorem 1, it is possible to define input shares for each input

ξ` =
∂g
∂x`

x`

q
. (20)

This allows us to reformulate the production function as

∑
`

ξ` = 1. (21)

With the new formulation in terms of shares, the firm chooses the input share of each input that
contributes to total output instead of choosing the quantity of each input.

Non-Envelope Result. We can directly apply Theorem 1 to express the change in total costs
for a general perturbation in which w` and q change as

dC =
∑
`

x`dw` +
∑
`

w`
∂g
∂x`

∑
m

Ψ`mξmdq︸ ︷︷ ︸
=dCnon-� (direct effect)

+ q
∑
`

w`
∂g
∂x`

∑
m

Ψ`mdξm︸ ︷︷ ︸
=dCξ (indirect effect)

, (22)

where Ψ`m is defined as in (38). Note that the unit of dC in this expression is the unit in which
input prices w1 through wL are defined (dollars). The direct/non-envelope term characterizes the
contribution of changes in input prices, dw`, and output, dq, to the change in the firm’s total costs
that is not attributed to changes in input shares, dξ`. What is the economic interpretation of
equation (22)? Consider a scenario in which a firm needs to provide an additional unit of output.
At an optimum, the firm is indifferent to increasing output by increasing any input of production.
But what if the firm is not optimizing, perhaps because the firm’s managers are boundedly rational
(Heidhues and Kőszegi, 2018)?

Even when firms do not make choices that lead to minimizing costs, Theorem 1 provides a
well-defined notion of the marginal cost of increasing production, or the marginal change in total
costs induced by a change in input prices. Similarly to the consumer demand case, these notions
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are defined to ensure that the contribution of each input to total output, as defined by input shares
in (20), remains unchanged.

3.3 Planning Problem in an Exchange Economy

In our third application, we consider a Pareto problem for a planner in an economy with I

individuals, indexed by i = {1, . . . , I}, who consume L different goods, indexed by j = {1, . . . , L}.
When I = L = 2, this application is an Edgeworth Box economy (Mas-Colell, Whinston and Green,
1995). Formally, we assume that the planner maximizes a utilitarian objective with Pareto weights
αi, so the planner chooses individual i’s consumption of good `, ci`, to maximize the objective

W =
∑
i

αiVi where Vi = ui (ci1, . . . , ciL) , (23)

subject to resource constraints for each good ` of the form

∑
i

ci` = y`, ∀`, (24)

where the parameters y` denote the endowment of each good `.
Following Theorem 1, it is possible to reformulate this problem as maximizing

W =
∑
i

αiui (ξi1y1, . . . , ξiLyL) , (25)

where individual i’s consumption share of good ` is given by

ξi` = ci`
y`
.

This in turn allows us to reformulate the resource constraint for each good ` as

∑
i

ξi` = 1, ∀`. (26)

Minimizing (23) subject to (24) is thus equivalent to minimizing (25) subject to (26). In the first
formulation, the planner chooses the quantity of each good allocated to each individual, while in the
second one the planner instead chooses the share of aggregate consumption of each good allocated
to each individual.
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Non-Envelope Result We can directly apply Theorem 1 to express the welfare change induced
by a general perturbation in which any y` changes as

dW =
∑
i

αi
∑
`

∂ui
∂ci`

ξi`dy`︸ ︷︷ ︸
=dWnon-� (direct effect)

+
∑
i

αi
∑
`

∂ui
∂ci`

dξi`y`︸ ︷︷ ︸
=dW ξ (indirect effect)

. (27)

In this case, the direct/non-envelope term characterizes the contribution of endowment changes to
the change in social welfare that is not attributed to changes in consumption shares. Since a social
welfare function, such as the one in (23) conflates both efficiency and redistribution considerations,
it is useful to separate both, as explained in Dávila and Schaab (2023b). If we choose a common
unit to aggregate individual welfare gains and losses (welfare numeraire or money-metric), it is
straightforward to write the efficiency gains (defined as aggregate willingness to pay in the common
unit) implied by (27) as

E ≡ Efficiency Gains =
∑
`

(∑
i

ξi`MRSi`

)
dy`︸ ︷︷ ︸

=Enon-� (direct effect)

+
∑
`

CovΣ
i [MRSi`, dξi`] y`︸ ︷︷ ︸

=Eξ (indirect effect)

,

where MRSi` =
∂ui
∂ci`
λi

denotes the marginal valuation that individual i attaches to a unit of good `,
expressed in the common unit, and where CovΣ

i [·, ·] = I ·Covi [·, ·] is a cross-sectional covariance-sum
across individuals.6

Hence, Theorem 1 provides a well-defined notion of the efficiency gains induced by a marginal
change in endowments — even at inefficient allocations, in which marginal rates of substitution
between goods are not equalized across individuals. It shows that such gains are due to i) a direct
effect, which captures the aggregate gain from allocating endowment changes to different individuals
in proportion to their consumption shares ξi`, and ii) an indirect effect, which captures the
reallocation of consumption shares to individuals with different valuations for the goods (MRSi`).

3.4 Planning Problem in a Production Economy

In our final application, we consider a planning problem in an economy with a single individual
who consumes L different goods, indexed by j = {1, . . . , L}, which are in turn produced using F
factors, indexed by f = {1, . . . , F}. Formally, we assume that the planner chooses the allocation
of factors to maximize the utility of the single individual

W = u (c1, . . . , c`, . . . , cL) , (28)
6The denominator λi is an individual normalizing factor to express welfare gains in a given common unit.
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where production of each good is potentially a function of the F factors, as in

c` = z`f` (n`1, . . . , n`f , . . . , n`F ) , ∀`, (29)

and where the (predetermined) supply of each factor, nf , must be allocated across the different
uses according to the resource constraints

∑
`

n`f = nf , ∀f. (30)

Following Theorem 1, it is possible to reformulate this problem as maximizing (28), where

c` = z`f` (ξ`1n1, . . . , ξ`fnf , . . . , ξ`FnF ) , ∀`, (31)

where the share of factor f used to produce good ` is given by ξ`f = n`f
nf

, which allows us to
reformulate the resource constraints for each factor f as

∑
`

ξ`f = 1, ∀f. (32)

Maximizing (28) subject to (29) and (30) is equivalent to doing so subject to (31) and (32). In
the first formulation, the planner chooses the quantity of each factor allocated to producing each
good, while in the second one the planner instead chooses the share of each factor allocated to its
different uses.

Non-Envelope Result We can directly apply Theorem 1 to express the welfare change induced
by a general perturbation in which any z` or n` change as

dW =
∑
`

∂u

∂c`

dz`f` + z`
∑
f

∂f`
∂n`f

ξ`fdnf


︸ ︷︷ ︸

=dWnon-� (direct effect)

+
∑
`

∂u

∂c`
z`
∑
f

∂f`
∂n`f

dξ`fnf︸ ︷︷ ︸
=dW ξ (indirect effect)

. (33)

In this case, the direct/non-envelope term characterizes the contribution of changes in technology
or factor endowments not attributed to changes in factor use shares. For changes in technology, the
direct/non-envelope term captures the welfare gain induced by having more output, holding factor
use shares ξ`f constant. For changes in factor endowments, the direct/non-envelope term captures
the welfare gain induced by using factors in proportion to their existing uses, again holding factor
use shares ξ`f constant. Hence, Theorem 1 provides a well-defined notion of the direct welfare effect
of a change in technology or factor endowments — even at inefficient allocations, in which factors
of production are misallocated across uses.
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Note that the indirect effect in this case can be written as

∑
f

CovΣ
`

[
∂u

∂c`
z`
∂f`
∂n`f

, dξ`f

]
nf , (34)

where CovΣ
` [·, ·] = L ·Cov` [·, ·] is a cross-sectional covariance-sum across produced goods. Equation

(34) shows that the indirect effect captures the reallocation of factors towards uses that increase
marginal utility adjusted marginal products ( ∂u∂c` z`

∂f`
∂n`f

). This second term is only non-zero for
inefficient allocations. The type of comparative static exercises in equation (34) are central to
the work on factor reallocation and misallocation, as in Hsieh and Klenow (2009), Acemoglu and
Restrepo (2018), and Baqaee and Farhi (2020), among many others.

4 Conclusion

This paper has shown that there exists an unambiguous notion of the direct effect of a parameter
perturbation on the value of an optimization problem’s objective away from an optimum for
problems with linearly homogeneous constraints. This “non-envelope” notion has the interpretation
of holding choice variables fixed, and relies on reformulating the optimization problem using shares
as choice variables.

As shown through four canonical applications exploring single-agent and planning problems,
it is possible to derive clear insights by systematically applying the non-envelope notion to any
optimization problem with linearly homogeneous constraints. We hope that new, meaningful
economic applications get developed around the non-envelope result presented in this paper.
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Appendix
A Proof of Theorem 1

Proof. The proof of this result is constructive. If the function g (·) is homogeneous of degree 1
in the choice variables, equation (2) can be expressed, appealing to Euler’s homogeneous function
theorem, as ∑

`

∂g

∂x`
x` = b (θ) ,

which allows us to rewrite the constraint in (2) as in (9), where the shares ξ` are defined in (8).
The change in the value of the objective can be expressed as

dV

dθ
=
∑
`

∂f

∂x`

dx`
dθ

+ ∂f

∂θ
.

Since (8) implies that x` = b(θ)
∂g
∂x`

ξ`, it follows that

dx`
dθ

= 1
∂g
∂x`

ξ`db (θ)
dθ

− x`
d
(
∂g
∂x`

)
dθ

+ b (θ) dξ`
dθ

 , (35)

where
d
(
∂g
∂x`

)
dθ

=
∂
(
∂g
∂x`

)
∂θ

+
∑
m

∂
(
∂g
∂x`

)
∂xm

dxm
dθ

= ∂2g

∂x`∂θ
+
∑
m

∂2g

∂x`xm

dxm
dθ

. (36)

Note that when x` = ξ` = 0, it must be that dx`
dθ = b(θ)

∂g
∂x`

dξ`
dθ . Hence, combining (35) and (36), we

find that

dx`
dθ

∂g

∂x`
= ξ`

db (θ)
dθ

− x`
∂
(
∂g
∂x`

)
∂θ

− x`
∑
m

∂
(
∂g
∂x`

)
∂xm

dxm
dθ

+ b (θ) dξ`
dθ

= ξ`
db (θ)
dθ

− x`
∂
(
∂g
∂x`

)
∂θ

−
∑
m

x`
∂g
∂xm

∂
(
∂g
∂xm

)
∂x`

dxm
dθ

∂g

∂xm
+ b (θ) dξ`

dθ
, (37)

where we use the symmetry of second derivatives, that is,
∂

(
∂g
∂x`

)
∂xm

= ∂
(
∂g
∂xm

)
∂x`

. Hence, we can write
(37) as

X = A−BX,
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where X and A are L× 1 vectors, and B is a L× L matrix given by

X =


...

dx`
dθ

∂g
∂x`
...

 , A =


...

ξ`
db(θ)
dθ − x`

∂

(
∂g
∂x`

)
∂θ + b (θ) dξ`dθ
...

 , B =


. . .

... . .
.

x`
∂g
∂xm

∂
(
∂g
∂xm

)
∂x`

. .
. ...

. . .

 .

Hence, X is given by
X = ΨA, where Ψ = (I + B)−1 , (38)

which implies that we can express dx`
dθ

∂g
∂x`

as

dx`
dθ

∂g

∂x`
=
∑
m

Ψ`mAm,

where Ψ`m is the (`,m) element of Ψ and Am is the m’th element of A. Therefore, we can express
dV
dθ as

dV

dθ
= ∂f

∂θ
+
∑
`

∂f
∂x`
∂g
∂x`

∑
m

Ψ`m

ξmdb (θ)
dθ

− xm
∂
(
∂g
∂xm

)
∂θ

+ b (θ) dξm
dθ

 ,
or separating direct and indirect effects as

dV

dθ
= ∂f

∂θ
+
∑
`

∂f
∂x`
∂g
∂x`

∑
m

Ψ`m

ξmdb (θ)
dθ

− xm
∂
(
∂g
∂xm

)
∂θ


︸ ︷︷ ︸

= dV non-�
dθ

(direct effect)

+
∑
`

∂f
∂x`
∂g
∂x`

b (θ)
∑
m

Ψ`m
dξm
dθ︸ ︷︷ ︸

=dV ξ (indirect effect)

,

which proves our result.

Special Case: Linear Constraint. Whenever g (·) is linear, it can be written as

∑
`

g` (θ)x` = b (θ) ,

where g` (θ) does not depend on any choice variable. In this case,

dx`
dθ

= 1
∂g
∂x`

(
ξ`
db (θ)
dθ

− x`
dg` (θ)
dθ

+ b (θ) dξ`
dθ

)
,
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which allows us to directly write dV
dθ as

dV

dθ
= ∂f

∂θ
+
∑
`

∂f
∂x`
∂g
∂x`

(
ξ`
db (θ)
dθ

− x`
dg` (θ)
dθ

)
︸ ︷︷ ︸

= dV non-�
dθ

(direct effect)

+
∑
`

∂f
∂x`
∂g
∂x`

b (θ) dξ`
dθ︸ ︷︷ ︸

=dV ξ (indirect effect)

.

Note that, in this case, x` = b(θ)
g`(θ)ξ`, and V can be directly expressed, after a change of variables,

as
V = f̃ (ξ1, . . . ξ`, . . . , ξL; θ) = f

(
b (θ)
g1 (θ)ξ1, . . . ,

b (θ)
g` (θ)ξ`, . . . ,

b (θ)
gL (θ)ξL; θ

)
.
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