ECON 500a General Equilibrium and Welfare Economics Efficiency and Welfare: Production Economies

Eduardo Dávila Yale University

Updated: November 13, 2024

Outline: Static Production Economies

- 1. Elementary Static Production Economies
- 2. General Static Production Economy
- 3. Efficiency and Welfare
- 4. Applications

Outline: Efficiency and Welfare

- 1. Welfare Assessments
- 2. Planning Problem
- 3. Welfare Theorems

Efficiency/Redistribution Decomposition

- I Given a physical structure, can we systematically attribute the welfare gains of a perturbation to specific sources?
	- I Question of "*Origins of welfare gains*"
	- lacktriangleright Now with production
- ▶ Recall from static exchange:

$$
\frac{dW^{\lambda}}{d\theta} = \frac{\frac{dW}{d\theta}}{\frac{1}{I} \sum_{i} \frac{\partial W}{\partial V^{i}} \lambda^{i}} = \sum_{i} \omega^{i} \frac{dV^{i|\lambda}}{d\theta} \quad \text{where} \quad \omega^{i} = \frac{\frac{\partial W}{\partial V^{i}} \lambda^{i}}{\frac{1}{I} \sum_{i} \frac{\partial W}{\partial V^{i}} \lambda^{i}}
$$

 \blacktriangleright λ^i normalizing factor to choose numeraire

 $Efficiency-Redistribution$ decomposition:

$$
\frac{dW^{\lambda}}{d\theta} = \underbrace{\sum_{i} \frac{dV^{i|\lambda}}{d\theta}}_{\Xi^{E} \text{ (Efficiency)}} + \underbrace{\mathbb{C}ov_{i}^{\Sigma} \left[\omega^{i}, \frac{dV^{i|\lambda}}{d\theta}\right]}_{\Xi^{RD} \text{ (Redistribution)}}
$$

Decomposing Efficiency

$$
\sum_{i} \text{Preferences } V^{i} = u^{i} \left(\left\{ c^{ij} \right\}_{j \in \mathcal{J}}, \left\{ n^{if,s} \right\}_{f \in \mathcal{F}} \right) \text{ imply that}
$$
\n
$$
\frac{\frac{dV^{i}}{d\theta}}{\lambda^{i}} = \sum_{j} \frac{\frac{\partial u^{i}}{\partial c^{ij}}}{\lambda^{i}} \frac{dc^{ij}}{d\theta} + \sum_{f} \frac{\frac{\partial u^{i}}{\partial n^{if,s}}}{\lambda^{i}} \frac{dn^{if,s}}{d\theta}
$$
\n
$$
= \sum_{j} MRS_{c}^{ij} \frac{dc^{ij}}{d\theta} - \sum_{f} MRS_{n}^{if} \frac{dn^{if,s}}{d\theta}
$$

where

$$
MRS_c^{ij} = \frac{\frac{\partial u^i}{\partial c^{ij}}}{\lambda^i}
$$
 and
$$
MRS_n^{if} = -\frac{\frac{\partial u^i}{\partial n^{if,s}}}{\lambda^i}
$$

 \blacktriangleright Individual welfare gains due to changes in consumption and factor supply

Decomposing Efficiency

 \blacktriangleright Efficiency:

$$
\Xi^E=\sum_i \frac{\frac{dV^i}{d\theta}}{\lambda^i}=\sum_j\sum_i MRS^{ij}_c\frac{dc^{ij}}{d\theta}-\sum_f\sum_i MRS^{if}_n\frac{dn^{if,s}}{d\theta}
$$

► Define shares $c^{ij} = \chi_c^{ij} c^j$ and $n^{if,s} = \chi_n^{if,s} n^{f,s}$, so

$$
\frac{dc^{ij}}{d\theta} = \frac{d\chi_c^{ij}}{d\theta}c^j + \chi_c^{ij}\frac{dc^j}{d\theta} \quad \text{and} \quad \frac{dn^{if,s}}{d\theta} = \frac{d\chi_n^{if,s}}{d\theta}n^{f,s} + \chi_n^{if,s}\frac{dn^{f,s}}{d\theta}
$$

 \blacktriangleright Therefore

$$
\sum_{i} MRS_{c}^{ij} \frac{dc^{ij}}{d\theta} = \mathbb{C}ov_{i}^{\Sigma} \left[MRS_{c}^{ij}, \frac{d\chi_{c}^{ij}}{d\theta} \right] c^{j} + AMRS_{c}^{j} \frac{dc^{j}}{d\theta}
$$

$$
\sum_{i} MRS_{n}^{if,s} \frac{dn^{if,s}}{d\theta} = \mathbb{C}ov_{i}^{\Sigma} \left[MRS_{n}^{if,s}, \frac{d\chi_{n}^{if,s}}{d\theta} \right] n^{f,s} + AMRS_{n}^{f} \frac{dn^{f,s}}{d\theta}
$$

 \triangleright Define aggregate marginal rates of substitution (AMRS):

$$
AMRS_c^j = \sum_i \chi_c^{ij} MRS_c^{ij} \quad \text{and} \quad AMRS_n^f = \sum_i \chi_n^{if,s} MRS_n^{if,s}
$$

Welfare Assessments: Exchange + Production Efficiency

 $\blacktriangleright \ \Xi^E = \Xi^{AE,X} + \Xi^{AE,P}$: Efficiency \rightarrow Exchange + Production \blacktriangleright Exchange efficiency:

$$
\Xi^{AE,X} = \underbrace{\mathbb{C}ov_i^{\Sigma}\left[MRS_c^{ij}, \frac{d\chi_c^{ij}}{d\theta}\right]c^j}_{\text{Cross-Sectional}} - \underbrace{\mathbb{C}ov_i^{\Sigma}\left[MRS_n^{if,s}, \frac{d\chi_n^{if,s}}{d\theta}\right]n^{f,s}}_{\text{Cross-Sectional}}.
$$

I Welfare gains from reallocating consumption and factor supply If $I = 1 \Rightarrow E^{AE,X} = 0$, but different from redistribution!

▶ Production efficiency:

$$
\Xi^{AE,P} = \sum_j AMRS_c^j \frac{dc^j}{d\theta} - \sum_f AMRS_n^f \frac{dn^{f,s}}{d\theta}
$$

I Welfare gains from consuming more (net of cost of supplying factors)

Production Efficiency

▶ Production function:
$$
y^{j,s} = G^j \left(\{ n^{jf,d} \}_{f \in \mathcal{F}}; \theta \right)
$$

\blacktriangleright No intermediate uses

Intermediates \rightarrow [Dávila and Schaab \(2024\)](#page-23-0)

$$
\frac{dy^{j,s}}{d\theta} = \sum_{f} \frac{\partial G^j}{\partial n^{jf,d}} \frac{dn^{jf,d}}{d\theta} + \frac{\partial G^j}{\partial \theta}
$$

Factor use share: $n^{jf,d} = \chi_n^{jf,d} n^{f,d}$

$$
\frac{d n^{jf,d}}{d \theta} = \frac{d \chi_n^{jf}}{d \theta} n^{f,d} + \chi_n^{jf,d} \frac{d n^{f,d}}{d \theta}
$$

 \blacktriangleright Consumption perturbation:

$$
\frac{dc^j}{d\theta} = \frac{dy^{j,s}}{d\theta} + \frac{d\bar{y}^{j,s}}{d\theta}
$$
\n
$$
= \sum_{f} \frac{\partial G^j}{\partial n^{j,f,d}} \left(\frac{d\chi_n^{j,f}}{d\theta} n^{f,d} + \chi_n^{j,f,d} \frac{dn^{f,d}}{d\theta} \right) + \frac{\partial G^j}{\partial \theta} + \frac{d\bar{y}^{j,s}}{d\theta}
$$
\n
$$
= \sum_{f} \frac{\partial G^j}{\partial n^{j,f,d}} \frac{d\chi_n^{jf}}{d\theta} n^{f,d} + \sum_{f} \chi_n^{jf,d} \frac{\partial G^j}{\partial n^{j,f,d}} \frac{dn^{f,d}}{d\theta} + \frac{\partial G^j}{\partial \theta} + \frac{d\bar{y}^{j,s}}{d\theta}
$$

Production Efficiency

$$
\sum_{j} AMRS_{c}^{j} \frac{dc^{j}}{d\theta} = \sum_{f} \left(\sum_{j} AMRS_{c}^{j} \frac{\partial G^{j}}{\partial n^{j} f, d} \frac{d\chi_{n}^{jf}}{d\theta} \right) n^{f,d}
$$

$$
+ \sum_{f} \left(\sum_{j} \chi_{n}^{jf,d} AMRS_{c}^{j} \frac{\partial G^{j}}{\partial n^{jf,d}} \right) \frac{dn^{f,s}}{d\theta}
$$

$$
+ \sum_{j} AMRS_{c}^{j} \left(\frac{\partial G^{j}}{\partial \theta} + \frac{d\bar{y}^{j,s}}{d\theta} \right) + \sum_{f} AMWP_{n}^{f} \frac{d\bar{n}^{f,s}}{d\theta}
$$

- \blacktriangleright *MWP_n^j*: welfare gain from adjusting factor
- \blacktriangleright *AMWP_n*: welfare gain from using extra unit of factor (for shares *χ jf,d n*)

Production Efficiency

$$
\blacktriangleright
$$
 From $\Xi^{AE,P}=\sum_j AMRS_c^j\frac{dc^j}{d\theta}-\sum_f AMRS_n^f\frac{dn^{f,s}}{d\theta}$ to

- ▶ XSFE: Welfare gains from reallocating factors across uses \blacktriangleright Horizontal economy
- I AFE: Welfare gains from adjusting aggregate factor supply
	- ▶ Robinson Crusoe economy
- ▶ Other three terms: changes in endowments or technology
- I **No assumptions on economic structure!**

Outline: Efficiency and Welfare

- 1. Welfare Assessments
- 2. Planning Problem
- 3. Welfare Theorems

Planning Problem: Perturbation

 \triangleright Perturbation approach → easiest

- 1. Exchange efficiency:
	- ▶ Consumption $\rightarrow MRS_c^{ij}$ equalized across individuals

$$
MRS_c^{ij} = \frac{\frac{\partial u^i}{\partial c^{ij}}}{\lambda^i} = \frac{\frac{\partial u^m}{\partial c^{mj}}}{\lambda^m} = MRS_c^{mj}
$$

- ▶ This implies that $AMRS_c^j = \sum_i \chi_c^{ij} MRS_c^{ij} = MRS_c^{ij}$, for any *i*
- ▶ Factor supply $\rightarrow MRS_n^{if,s}$ equalized across individuals
	- \blacktriangleright *MRS*^{*if*}</sup> = − $\frac{\partial u^i}{\partial n^{if,s}} = \frac{\partial u^m}{\partial n^m f, s}$ = *MRS*^{*mf*}
	- ▶ This implies that $AMRS_n^f = \sum_i \chi_n^{if,s} MRS_n^{if,s} = MRS_n^{if,s}$, for any *i*

Planning Problem: Perturbation

- 2. Production efficiency:
	- ▶ Cross-sectional factor $\rightarrow MWP_n^{jf}$ equalized across uses
		- ▶ *MW* P_n^{j} ^{*f*} = *AMRS*^{*j*} $\frac{\partial G^j}{\partial n^{j} f, d}$ = *AMRS*^{*t*}_{*c*}^{$\frac{\partial G^{\ell}}{\partial n^{\ell} f, d}$ = *MWP*^{*t*}_{*n*}^{*t*}}
		- **F** This implies that $AMWP_n^f = \sum_j \chi_n^{jf,d} MWP_n^{jf} = MWP_n^{jf}$
	- \blacktriangleright Aggregate factor $\rightarrow AMWP_n^f = AMRS_n^f$, which in turn ensures that

$$
MWP_n^{jf} = MRS_n^{if,s},
$$

for any *j*, *i*, *f* combination.

Planning Problem: Lagrangian

$$
\mathcal{L} = \sum_{i} \alpha^{i} u^{i} \left(\left\{ c^{ij} \right\}_{j \in \mathcal{J}}, \left\{ n^{if,s} \right\}_{f \in \mathcal{F}} \right)
$$

$$
- \sum_{j} \eta_{y}^{j} \left(\sum_{i} c^{ij} - G^{j} \left(\left\{ n^{jf,d} \right\}_{f} \right) \right) - \sum_{f} \eta_{n}^{f} \left(\sum_{j} n^{jf,d} - \sum_{i} n^{if,s} - \sum_{i} \bar{n}^{if,s} \right)
$$

$$
+ \sum_{i} \sum_{j} \kappa_{c}^{ij} c^{ij} + \sum_{i} \sum_{f} \kappa_{n}^{if,s} n^{if,s} + \sum_{j} \sum_{f} \kappa_{n}^{jf,d} n^{jf,d},
$$

 \blacktriangleright Optimality: same arguments as exchange

$$
\frac{d\mathcal{L}}{dc^{ij}} = \alpha^i \frac{\partial u^i}{\partial c^{ij}} - \eta^j_y + \kappa^{ij}_c = 0
$$

$$
\frac{d\mathcal{L}}{dn^{if,s}} = \alpha^i \frac{\partial u^i}{\partial n^{if,s}} + \eta^f_n + \kappa^{if,s}_n = 0
$$

$$
\frac{d\mathcal{L}}{dn^{if,d}} = \eta^j_y \frac{\partial G^j}{\partial n^{if,d}} - \eta^f_n + \kappa^{jf,d}_n = 0.
$$

Outline: Efficiency and Welfare

- 1. Welfare Assessments
- 2. Planning Problem
- 3. Welfare Theorems

Proof #1 of First Welfare Theorem I

- \triangleright Consider CE \rightarrow suppose another feasible allocation Pareto dominates it
- \triangleright The strictly better off individual could not have afforded the new allocation at competitive prices, so

$$
\sum_{j} p^{j\star} c^{ij} > \sum_{j} p^{j\star} \bar{y}^{ij,s} + \sum_{f} w^{f\star} (n^{if,s\star} + \bar{n}^{if,s}) + \sum_{j} \nu^{ij} \pi^{j\star}
$$

 \triangleright Local non-satiation ensures that, for all other individuals:

$$
\sum_j p^{j\star}c^{ij} > \sum_j p^{j\star}\bar{y}^{ij,s} + \sum_f w^{f\star}\left(n^{if,s\star} + \bar{n}^{if,s}\right) + \sum_j \nu^{ij}\pi^{j\star}
$$

 \blacktriangleright Aggregating

$$
\sum_{i} \sum_{j} p^{j \star} c^{ij} > \sum_{i} \sum_{j} p^{j \star} \bar{y}^{ij,s} + \underbrace{\sum_{i} \sum_{f} w^{f \star} (n^{if,s \star} + \bar{n}^{if,s}) + \sum_{j} \sum_{i} =1} = \sum_{j} p^{j \star} y^{ij} \pi^{j \star}}
$$

Proof #1 of First Welfare Theorem II

 \triangleright So

$$
\sum_j p^{j\star}\left(c^j-\bar{y}^{j,s}-y^{j,s}\right)>0
$$

▶ But market clearing requires $c^j = \sum_i c^{ij} = \sum_i \bar{y}^{ij,s} + y^{j,s} = \bar{y}^{j,s} + y^{j,s}$, which contradicts the previous equation

 \blacktriangleright Hence, no feasible allocation can Pareto dominate a CE

 \blacktriangleright Any competitive equilibrium is Pareto efficient

Proof #2 of Second Welfare Theorem I

▶ Consider interior case (can be relaxed)

\blacktriangleright Individual optimality conditions

λ i : Lagrange multiplier on budget constraint

$$
\frac{\partial u^i}{\partial c^{ij}} - \lambda^i p^j = 0 \text{ and } -\frac{\partial u^i}{\partial n^{if,s}} - \lambda^i w^f = 0
$$

\blacktriangleright Planning optimality conditions

 α^i : Pareto weight, η^j_y : good *j*'s Lagrange multiplier, and η^f_n : factor *f*'s Lagrange multiplier

$$
\frac{\partial u^i}{\partial c^{ij}} - \frac{1}{\alpha^i} \eta^j_y = 0 \quad \text{and} \quad -\frac{\partial u^i}{\partial n^{if,s}} - \frac{1}{\alpha^i} \eta^f_n = 0
$$

▶ Production side: competition

$$
p^j\frac{\partial G^j}{\partial x^{j\ell}}-w^f=0
$$

Proof #2 of Second Welfare Theorem II

 \blacktriangleright Production side: planning

$$
\eta_y^j \frac{\partial G^j}{\partial n^{jf,d}} - \eta_n^f = 0
$$

► One-to-one mappings between λ^i and α^i , between η^j_y and p^j , and η_n^f and w^f :

$$
\lambda^i \leftrightarrow \frac{1}{\alpha^i}
$$
, $p^j \leftrightarrow \eta^j_y$, and $w^f \leftrightarrow \eta^f_n$

► Given a CE, if we choose Pareto weights $\alpha^i = \frac{1}{\lambda^i}$, we know that $p^j = \eta_n^j$ and $w^f = \eta_n^f$ is a solution of the planning problem \blacktriangleright Any competitive equilibrium is Pareto efficient ▶ We get second welfare theorem for free!

Proof #3 of First Welfare Theorem I

 \triangleright Starting from a CE, compute individual welfare gains of a perturbation:

λ i : Lagrange multiplier on budget constraint

$$
\frac{dV^i}{d\theta} = \lambda^i \left(\sum_j \frac{\frac{\partial u^i}{\partial c^{ij}}}{\lambda^i} \frac{dc^{ij}}{d\theta} + \sum_f \frac{\frac{\partial u^i}{\partial n^{if,s}}}{\lambda^i} \frac{dn^{if,s}}{d\theta} \right)
$$

$$
= \lambda^i \left(\sum_j p^j \frac{dc^{ij}}{d\theta} - \sum_f w^f \frac{dn^{if,s}}{d\theta} \right)
$$

 \blacktriangleright Last equation uses individual optimality

I Say we perturb individual demands, but budget constraints and market clearing remain satisfied:

$$
\sum_{j} p^{j} \frac{dc^{ij}}{d\theta} - \sum_{f} w^{f} \frac{dn^{if,s}}{d\theta} = \sum_{j} \frac{dp^{j}}{d\theta} \left(\bar{y}^{ij,s} - c^{ij} \right) + \sum_{f} \frac{dw^{f}}{d\theta} \left(n^{if,s} + \bar{n}^{if,s} \right) + \sum_{j} \nu^{ij} \frac{d\pi^{j}}{d\theta}
$$

Proof #3 of First Welfare Theorem II

▶ Profits must also adjust:

$$
\frac{d\pi^j}{d\theta} = p^j \frac{dy^{j,s}}{d\theta} - \sum_f w^f \frac{dn^{j,f,d}}{d\theta} + \frac{dp^j}{d\theta} y^{j,s} - \sum_f \frac{dw^f}{d\theta} n^{jf,d}
$$

$$
= \sum_f \underbrace{\left(p^j \frac{\partial G^j}{\partial n^{jf,d}} - w^f\right) \frac{dn^{jf,d}}{d\theta} + \frac{dp^j}{d\theta} y^{j,s} - \sum_f \frac{dw^f}{d\theta} n^{jf,d}
$$

$$
= 0
$$

 \blacktriangleright We can express the normalized individual welfare gain $\frac{\frac{dV^i}{d\theta}}{\lambda^i}$ as

$$
\frac{\frac{dV^i}{d\theta}}{\lambda^i} = \sum_j p^j \frac{dc^{ij}}{d\theta} - \sum_f w^f \frac{dn^{if,s}}{d\theta} = \sum_j \frac{dp^j}{d\theta} \left(\bar{y}^{ij,s} - c^{ij}\right) + \sum_f \frac{dw^f}{d\theta} \left(n^{if,s} + \bar{n}^{if,s}\right) + \sum_j \nu^{ij} \frac{d\pi^j}{d\theta}
$$

Proof #3 of First Welfare Theorem III

 \triangleright After aggregating across all individuals, it must be that

$$
\sum_{i} \frac{\frac{dV^i}{d\theta}}{\lambda^i} = \sum_{j} \frac{dp^j}{d\theta} \sum_{i} \left(\bar{y}^{ij,s} - c^{ij}\right) + \sum_{f} \frac{dw^f}{d\theta} \sum_{i} \left(n^{if,s} + \bar{n}^{if,s}\right)
$$

$$
+ \sum_{j} \sum_{i} \frac{1}{\nu^{ij}} \frac{d\pi^j}{d\theta}
$$

 \triangleright So

$$
\sum_{i} \frac{\frac{dV^i}{d\theta}}{\lambda^i} = \sum_{j} \frac{dp^j}{d\theta} \sum_{i} (\bar{y}^{ij,s} + y^{j,s} - c^{ij})
$$

$$
+ \sum_{f} \frac{dw^f}{d\theta} \sum_{i} (n^{if,s} + \bar{n}^{if,s} - n^{f,d}) = 0
$$

Proof #3 of First Welfare Theorem IV

 \blacktriangleright The final argument follows again by contradiction. Since \sum_i $\frac{dV^i}{d\theta} = 0$, if for some individual $\frac{dV^i}{\lambda^i} > 0$, there must be another individual for whom $\frac{dV^i}{d\theta} < 0$, so every perturbation features losers, implying that the competitive equilibrium is Pareto efficient.

References I

Dávila, E., and A. Schaab (2024): "Welfare Accounting," *Working Paper*.