ECON 500a General Equilibrium and Welfare Economics Dynamic Economies

Eduardo Dávila Yale University

Updated: November 19, 2024

Outline: Dynamic Stochastic Economies

- 1. Dynamic Economies
- 2. Stochastic Economies
- 3. Asset Pricing
- 4. Efficiency and Welfare
- 5. Incomplete Markets
- 6. Production, Firms, Ownership
- Readings
 - ▶ MWG: Chapter 20, 19.B, 19.C, 19.D,

Defining Goods/Commodities

▶ What is a good/factor/commodity?

goods (services, factors) consumed, produced, exchanged, or supplied at different times, states, or locations are different goods

- 1. **Time**: an apple today is a different good from the same apple tomorrow
- 2. **State**: an apple when sunny is a different good from the same apple when rainy
- 3. Location: an apple hanging from the tree is a different good from the same apple at the store.
 - ▶ Production economies <u>nest</u> location \rightarrow expanding the set \mathcal{J}
 - e.g. good 1 and good 2 could be the "same" good in different locations → these are really different goods
 - e.g. Iceberg costs in Armington model
- ▶ Dynamic stochastic economies are very different

Modeling Time

▶ Discrete time

- ▶ Countable dates, indexed by $t \in \{0, 1, ..., T\}$, where $T \leq \infty$ Similar with continuous time
 - A date is a point in time in which economic activity (consumption, exchange, production) takes place
- ▶ $T < \infty$: finite-horizon → this course
- ▶ $T = \infty$: infinite-horizon \rightarrow macro
- ▶ No uncertainty \rightarrow perfect for esight

Intertemporal Preferences

General preferences

$$V^{i} = u^{i} \left(c_{0}^{i}, \dots, c_{t}^{i}, \dots, c_{T}^{i} \right)$$

cⁱ_t: consumption of individual i at date t
 Consistent notation → t as subscript

Intertemporal Preferences

Standard intertemporal preferences

Backus, Routledge, and Zin (2005): "exotic" preferences

$$V^{i} = \sum_{t=0}^{T} \left(\beta^{i}\right)^{t} u^{i} \left(c_{t}^{i}\right)$$

- ▶ Time separable + Exponential discounting
- Why? Recursive + time consistent: $V_t^i = u^i (c_t^i) + \beta^i V_{t+1}^i$
- ▶ β^i : discount factor
- ▶ $u^i(\cdot)$: instantaneous/flow utility

Inada condition:
$$\lim_{c_t^i \to 0} \frac{\partial u^i}{\partial c_t^i} = \infty$$

Intertemporal Preferences

► Typically → isoelastic preferences: $u^i(c_t^i) = \frac{(c_t^i)^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}}$

- ψ is EIS (elasticity of intertemporal substitution)
- $\psi \to 1$: log utility
- Macro $\rightarrow \psi = \frac{1}{2}$
- Finance $\rightarrow \psi = 1.5$ (Epstein-Zin)

▶ With multiple goods and factors :

$$V^{i} = \sum_{t=0}^{T} \left(\beta^{i}\right)^{t} u^{i} \left(\left\{c_{t}^{ij}\right\}_{j \in \mathcal{J}}, \left\{n_{t}^{if,s}\right\}_{f \in \mathcal{F}}\right)$$

Fisher Economy

- ▶ Fisher Economy ⇒ How are interest rates determined? Fisher (1930)
- Single good endowment economy
 - ▶ $I \ge 1, J = 1, T = 1$
 - If I = 2, Fisher economy becomes a static Edgeworth box economy
 - ▶ T = 1 means two dates: t = 0 and t = 1
- ▶ Roadmap
 - 1. Physical Structure
 - 2. Once-and-for-all Trading
 - 3. Sequential Trading

Fisher Economy: Physical Structure

▶ Preferences

$$V^{i} = u^{i}\left(c_{0}^{i}\right) + \beta^{i}u^{i}\left(c_{1}^{i}\right)$$

► Resource constraints

$$\sum_i c^i_t = \sum_i \bar{y}^i_t$$

 $\blacktriangleright If I = 2:$

$$V^{1} = u^{1} (c_{0}^{1}) + \beta^{1} u^{1} (c_{1}^{1})$$
$$V^{2} = u^{2} (c_{0}^{2}) + \beta^{2} u^{2} (c_{1}^{2})$$
$$c_{0}^{1} + c_{0}^{2} = \bar{y}_{0}^{1} + \bar{y}_{0}^{2}$$
$$c_{1}^{1} + c_{1}^{2} = \bar{y}_{1}^{1} + \bar{y}_{1}^{2}$$

Preferences Individual 1 Preferences Individual 2 Resource Constraint Date 0 Resource Constraint Date 1

Fisher Economy: Box Diagram

Fisher Economy: Planning Problem

$$\max_{\left\{c_{t}^{i}\right\}}\sum_{i}\alpha^{i}\sum_{t}\left(\beta^{i}\right)^{t}u^{i}\left(c_{t}^{i}\right), \qquad \text{s.t.} \qquad \sum_{i}c_{t}^{i}=\sum_{i}\bar{y}_{t}^{i}, \quad \forall t$$

Same as static exchange economy!

Lagrangian

$$\mathcal{L} = \sum_{i} \alpha^{i} \sum_{t} \left(\beta^{i}\right)^{t} u^{i} \left(c_{t}^{i}\right) - \sum_{t} \eta_{t} \left(\sum_{i} c_{t}^{i} - \sum_{i} \bar{y}_{t}^{i}\right)$$

Optimality conditions

$$\frac{d\mathcal{L}}{dc_t^i} = \alpha^i \left(\beta^i\right)^t \frac{\partial u^i}{\partial c_t^i} - \eta_t = 0$$

► Efficiency

$$\frac{\beta^{i}\frac{\partial u^{i}}{\partial c_{1}^{i}}}{\frac{\partial u^{i}}{\partial c_{0}^{i}}} = \frac{\eta_{1}}{\eta_{0}}, \, \forall i$$

Redistribution

$$\frac{\frac{\partial u^i}{\partial c_0^i}}{\frac{\partial u^n}{\partial c_0^n}} = \frac{\beta^i \frac{\partial u^i}{\partial c_1^i}}{\beta^i \frac{\partial u^n}{\partial c_1^n}} = \frac{\alpha^n}{\alpha^i}$$

▶ Dynamic economies \Rightarrow More subtle equilibrium definitions

- 1. Once-and-for-all Trading \Rightarrow Arrow-Debreu
- 2. Sequential Trading \Rightarrow Radner

Once-and-for-all

- Consumption at each date has linear price p_t
- ▶ Individual initially trade and commit to deliver as time goes by
- Delivery of goods occurs sequentially as time unfolds
- ▶ <u>Full commitment</u> to deliver goods: infinite punishments

A competitive equilibrium is an allocation $\{c_t^i\}$, and prices $\{p_t\}$, such that

i) individuals choose consumption paths to maximize utility subject to their budget constraint taking prices as given, that is, they solve

$$\max_{c_t^i} \sum_t \left(\beta^i\right)^t u^i \left(c_t^i\right) \quad \text{s.t.} \quad \sum_t p_t c_t^i = \sum_t p_t \bar{y}_t^i, \quad \forall i,$$

ii) and markets clear, that is, resource constraints hold:

$$\sum_{i} c_t^i = \sum_{i} \bar{y}_t^i, \quad \forall t.$$

▶ Lagrangian, assuming interior solution:

$$\mathcal{L} = \sum_{t} \left(\beta^{i}\right)^{t} u^{i} \left(c_{t}^{i}\right) - \lambda^{i} \left(\sum_{t} p_{t} c_{t}^{i} - \sum_{t} p_{t} \bar{y}_{t}^{i}\right)$$

Optimality conditions

$$\frac{d\mathcal{L}}{dc_t^i} = \left(\beta^i\right)^t \frac{\partial u^i}{\partial c_t^i} - \lambda^i p_t = 0$$

• When T = 1 case, these conditions imply

$$\frac{\beta^{i} \frac{\partial u^{i}}{\partial c_{1}^{i}}}{\frac{\partial u^{i}}{\partial c_{0}^{i}}} = \frac{p_{1}}{p_{0}} \tag{1}$$

- ▶ RHS is rate at which *i* can exchange consumption at date 0 vs. date 1 — note that dim $\binom{p_1}{p_0} = \frac{\text{consumption at date 0}}{\text{consumption at date 1}}$ — at the market in which all trades take place
- Optimal to equalize the rate of exchange to the individual's marginal rate of substitution between consumption at both dates.
- ▶ $\frac{p_0}{p_1}$ is the gross *interest rate*, and is typically written as

$$\frac{p_0}{p_1} \equiv 1 + r_1$$

- ▶ $1 + r_1$ is the price of date 0 consumption in terms of date 1 consumption (interest rate)
- ▶ $\frac{1}{1+r_1}$ is the price of date 1 consumption in terms of date 0 consumption (discount factor)
- ▶ Interest rate is real, since it is expressed in units of consumption

▶ *Present value* and *future value* budget constraints:

(Present Value)
$$c_0^i + \frac{1}{1+r_1}c_1^i = \bar{y}_0^i + \frac{1}{1+r_1}\bar{y}_1^i$$

(Future Value) $(1+r_1) c_0^i + c_1^i = (1+r_1) \bar{y}_0^i + \bar{y}_1^i$

Just choosing numeraire!

▶ Individual optimality is an *Euler equation*:

$$\frac{\partial u^i}{\partial c_0^i} = (1+r_1)\,\beta^i \frac{\partial u^i}{\partial c_1^i}$$

Individual must be indifferent between

- consuming at date 0, which yields a utility gain of $\frac{\partial u^i}{\partial c^i}$
- using that unit of date-0 consumption to purchase $\frac{p_0}{p_1} \equiv 1 + r_1$ units of date 1 consumption, which when consumed yield a utility gain of $\beta^i \frac{\partial u^i}{\partial c_1^i}$

- More realistic \Rightarrow Trade as time unfolds
 - Trade occurs sequentially, under the assumption that individuals cannot renege on their promises
- Definition: an *asset* is a tradable claim that allows individuals to exchange resources across dates (and, in stochastic economies, states)
- ▶ One asset in this economy: *risk-free* or *riskless asset*

A competitive equilibrium is a consumption allocation $\{c_t^i\}$, an asset allocation $\{a_t^i\}$, and a path of interest rates $\{1 + r_t\}$, such that

i) individuals choose consumption paths to maximize utility subject to their budget constraint taking prices as given, that is, they solve

$$\max_{\left\{c_{t}^{i},a_{t}^{i}\right\}}\sum_{t}\left(\beta^{i}\right)^{t}u^{i}\left(c_{t}^{i}\right) \quad \text{s.t.} \quad c_{t}^{i}+a_{t}^{i}=\bar{y}_{t}^{i}+\left(1+r_{t}\right)a_{t-1}^{i}, \;\forall t,\;\forall i,$$

where $a_{-1}^i = a_T^i = 0$, $\forall i$ we could have > 0, but aggregates should still be zero

ii) and markets clear at each date, that is, resource constraints hold:

$$\sum_{i} c_t^i = \sum_{i} \bar{y}_t^i, \quad \forall t,$$

and the asset market clears at each date:

$$\sum_{i} a_t^i = 0, \quad \forall t < T.$$

- If $a_0^i > 0 \Rightarrow$ Saving
- If $a_0^i < 0 \Rightarrow$ Borrowing
- ▶ # of budget constraints: T + 1 vs. 1

• If
$$I = 2$$

$$\max_{c_0^i, c_1^i, a_0^i} u^i (c_0^i) + \beta^i u^i (c_1^i) \quad \text{s.t.}$$

$$c_0^i + a_0^i = \bar{y}_0^i$$

$$c_1^i = \bar{y}_1^i + (1+r_1) a_0^i$$

$$\begin{split} c_0^1 + c_0^2 &= \bar{y}_0^1 + \bar{y}_0^2 \\ c_1^1 + c_1^2 &= \bar{y}_1^1 + \bar{y}_1^2 \\ &\sum_i a_0^i = 0 \end{split}$$

Market Clearing Date 0 Market Clearing Date 1

Asset Market Clearing

▶ Lagrangian assuming an interior solution:

$$\mathcal{L} = \sum_{t} \left(\beta^{i}\right)^{t} \left(u^{i}\left(c_{t}^{i}\right) - \lambda_{t}^{i}\left(c_{t}^{i} + a_{t}^{i} - \bar{y}_{t}^{i} - (1 + r_{t})a_{t-1}^{i}\right)\right)$$

▶ Optimality conditions

$$\frac{d\mathcal{L}}{dc_t^i} = \frac{\partial u^i}{\partial c_t^i} - \lambda_t^i = 0 \text{ and } \frac{d\mathcal{L}}{da_t^i} = -\left(\beta^i\right)^t \lambda_t^i + \left(\beta^i\right)^{t+1} \left(1 + r_{t+1}\right) \lambda_{t+1}^i = 0$$

"All Hamiltonians are Lagrangians"

 \blacktriangleright $T = 1 \Rightarrow Euler equation:$

$$\lambda_t^i = \beta^i \left(1 + r_{t+1}\right) \lambda_{t+1}^i \Rightarrow \frac{\partial u^i}{\partial c_0^i} = \left(1 + r_1\right) \beta^i \frac{\partial u^i}{\partial c_1^i}$$

which implies that

$$\frac{\beta^i \frac{\partial u^i}{\partial c_1^i}}{\frac{\partial u^i}{\partial c_0^i}} = \frac{1}{1+r_1}$$

Same as once-and-for-all trading!

Competitive Equilibrium: Equivalence

 \blacktriangleright Perfect for esight + one asset = Complete Markets

Once-and-for-all Trade $\underset{\text{Markets}}{\longleftrightarrow}$ Sequential Trade

Proof: consolidate budget constraints

 \blacktriangleright T = 1 case

$$a_0^i = \frac{c_1^i - \bar{y}_1^i}{1 + r_1} \Rightarrow c_0^i + \frac{c_1^i - \bar{y}_1^i}{1 + r_1} = \bar{y}_0^i \Rightarrow c_0^i + \frac{c_1^i}{1 + r_1} = \bar{y}_0^i + \frac{\bar{y}_1^i}{1 + r_1}$$

▶ $T > 1 \Rightarrow$ recursive substitution

▶ Why is this equivalence result important? We can apply all the result from Block I!

Walras' Law: Once-and-for-all

- 1. Once-and-for-all: same as static exchange
- ► Aggregating budget constraints

$$\sum_{t} p_t \left(\sum_{i} c_t^i - \sum_{i} \bar{y}_t^i \right) = 0$$

▶ If $\sum_i c_t^i = \sum_i y_t^i$ at all but one date, the market for consumption at that one date must also clear

Walras' Law: Sequential Trading

2. Sequential trading

 \blacktriangleright Aggregating all budget constraints at date t

$$\sum_{i} c_{t}^{i} + \sum_{i} a_{t}^{i} = \sum_{i} \bar{y}_{t}^{i} + (1 + r_{t}) \sum_{i} a_{t-1}^{i} \Rightarrow a_{t} = \bar{y}_{t} - c_{t} + (1 + r_{t}) a_{t-1},$$

where $a_t = \sum_i a_t^i$, $c_t = \sum_i a_t^i$, and $\bar{y}_t = \sum_i \bar{y}_t^i$

• If asset markets clear at all dates, $a_t = 0$, then consumption markets must clear too:

$$a_t = 0, \ \forall t \Rightarrow \bar{y}_t - c_t = 0,$$

▶ If consumption markets clear at all dates, $\bar{y}_t = c_t$, then asset markets must also clear

$$\bar{y}_t - c_t = 0, \ \forall t \Rightarrow a_t = 0,$$

where we used the fact that $a_{t-1} = 0$

Competitive Equilibrium: Extensions

1. Permanent Income Hypothesis

2. Multiple Goods: Physical Structure

$$\begin{aligned} V^{i} &= \sum_{t} \left(\beta^{i}\right)^{t} u^{i} \left(\left\{c_{t}^{ij}\right\}_{j \in \mathcal{J}}\right) \\ &\sum_{i} c_{t}^{ij} = \sum_{i} \bar{y}_{t}^{ij} \end{aligned}$$

Competitive Equilibrium: Extensions

▶ Multiple Goods: Once-and-for-all trading

$$\max_{c_t^{ij}} \sum_t \left(\beta^i\right)^t u^i \left(\left\{c_t^{ij}\right\}_{j \in \mathcal{J}}\right) \quad \text{s.t.} \quad \sum_t \sum_j p_t^j c_t^{ij} = \sum_t \sum_j p_t^j \bar{y}_t^{ij}$$

▶ Resource constraints: $\sum_i c_t^{ij} = \sum_i \bar{y}_t^{ij}$

Competitive Equilibrium: Extensions

Multiple Goods: Sequential trading

$$\begin{split} \max_{\left\{c_t^{ij}, a_t^i\right\}} &\sum_t \left(\beta^i\right)^t u^i \left(\left\{c_t^{ij}\right\}_{j \in \mathcal{J}}\right) \quad \text{s.t.} \\ &\sum_j p_t^j c_t^{ij} + a_t^i = \sum_j p_t^j \bar{y}_t^{ij} + (1+r_t) a_{t-1}^i, \; \forall t, \; \forall i \end{split}$$

where $a_{-1}^i = a_T^i = 0, \forall i,$

- Resource constraints: $\sum_{i} c_{t}^{ij} = \sum_{i} \bar{y}_{t}^{ij}, \quad \forall j, \forall t,$
- Asset market clearing: $\sum_{i} a_t^i = 0$, $\forall t < T$

Assumption: financial asset in dollars

- Alternative: financial asset pays in real terms (e.g. in apples) (Geanakoplos and Mas-Colell, 1989)
- ▶ T + 1 normalizations: one p_t^j per period
- ▶ Alternative numeraire/asset denomination
 - Choose good 1 as numeraire at each date $(p_t^1 = 1)$
 - Define real asset in units of the numeraire (good 1)

$$c_t^{i1} + \sum_{j=2}^J p_t^j c_t^{ij} + a_t^i = \bar{y}_t^{i1} + \sum_{j=2}^J p_t^j \bar{y}_t^{ij} + (1+r_t) a_{t-1}^i$$

References I

- BACKUS, D. K., B. R. ROUTLEDGE, AND S. E. ZIN (2005): "Exotic Preferences for Macroeconomists," *NBER Macroeconomics Annual* 2004, Volume 19, pp. 319–414.
- FISHER, I. (1930): The Theory of Interest: As Determined by Impatience to Spend Income and Opportunity to Invest It. Macmillan.
- GEANAKOPLOS, J., AND A. MAS-COLELL (1989): "Real Indeterminacy with Financial Assets," *The Journal of Economic Theory*, 47(1), 22–38.