ECON 500a General Equilibrium and Welfare Economics Asset Pricing

Eduardo Dávila Yale University

Updated: December 03, 2024

Outline: Dynamic Stochastic Economies

- 1. Dynamic Economics
- 2. Stochastic Economics
- 3. Asset Pricing
- 4. Efficiency and Welfare
- 5. Incomplete Markets
- 6. Production, Firms, Ownership
- ► Readings
 - MWG: Chapter 19
 - ▶ Duffie (2001); Cochrane (2005); Campbell (2017)

Roadmap

- 1. Implications of competitive equilibrium for asset prices
 - Competitive Equilibrium \Rightarrow Linear Pricing
 - ▶ Competitive Equilibrium \Rightarrow No Arbitrage
- 2. Arbitrage pricing: Fundamental Theorem of Asset Pricing
 - ▶ No Arbitrage \iff Linear Pricing
- 3. Fundamental Asset Pricing Equation: several versions
 - i) Stochastic Discount Factor
 - ii) State Prices
 - iii) Risk-Neutral Probabilities
 - iv) Beta Representation
- 4. Extensions
 - Replication: Binomial/Black-Scholes Model
 - Heterogeneous Beliefs
 - ▶ Beliefs/Preferences Equivalence
- 5. Application: Consumption Based Asset Pricing
- 6. Application: CAPM (Capital Asset Pricing Model)

Competitive Equilibrium implies Linear Pricing

Asset prices in a competitive equilibrium satisfy linear pricing, that is, it is possible to find state-prices $\mu(s) > 0$, such that

$$q_{0}^{z} = \sum_{s} \mu\left(s\right) d_{1}^{z}\left(s\right)$$

▶ In matrix form, $\boldsymbol{q}_0 = \boldsymbol{\mu} \boldsymbol{D}$, where

$$\boldsymbol{\mu} = (\mu(1), \dots, \mu(s), \dots, \mu(S))$$

is a vector of state-prices of dimension $1\times S$

- Notation: $\mu(s)$ rather than $\mu_0(s)$
- Existence of $\mu(s)$ follows from optimality conditions (Euler equations)

Remark #1: Many valid state-prices \Rightarrow One per individual

▶ Unique state-prices only when markets are complete

Remark #2: this result requires having no portfolio constraints

- ▶ No short-selling constraints
- No borrowing constraints
- No collateral constraints

Competitive Equilibrium implies No-Arbitrage

▶ Absence of arbitrage: A system of asset prices q_0 is arbitrage free if there is no self-financing portfolio with positive payoffs, that is, if there is no portfolio a_0 such that $q_0a_0 \leq 0$ and $Da_0 \geq 0$ (at least one with strict inequality)

$$\boldsymbol{D}\boldsymbol{a}_{0} = \left(\begin{array}{c} \sum_{z} d_{1}^{z}\left(1\right) a_{0}^{z} \\ \vdots \\ \sum_{z} d_{1}^{z}\left(s\right) a_{0}^{z} \\ \vdots \\ \sum_{z} d_{1}^{z}\left(S\right) a_{0}^{z} \end{array} \right)_{S \times 1}$$

- "No self-financing portfolio has weakly positive payoffs in every state and a strictly positive payoffs in some state"
- \blacktriangleright Absence of arbitrage \rightarrow very weak restriction
 - Free-lunches are not available in financial markets
 - Applies to both complete and incomplete markets
- Asset prices in a competitive equilibrium satisfy absence of arbitrage
 - ▶ Proof: If preferences are strongly monotone and there are arbitrage opportunities, then individual demands are unbounded and the optimized value of individual problem is ∞

Arbitrage Pricing vs. Equilibrium Pricing

▶ Absence of arbitrage is a property of prices \boldsymbol{q}_0 and payoffs \boldsymbol{D}

- No need to specify preferences (beyond non-satiation), technologies, or equilibrium notion
- ▶ Applies to both complete and incomplete markets
- No-arbitrage only informs us about relative prices

 Summers (1985): finance is "ketchup economics", criticizing financial economists methodological focus on arbitrage, neglecting broader economic fundamentals

"There are ketchup economists who have shown that two-quart bottles of ketchup invariably sell for twice as much as one-quart bottles, except for deviations traceable to transaction costs. They conclude that the ketchup market is perfectly efficient. They <u>ignore the forces of supply</u> and demand and other economic fundamentals."

Fundamental Theorem of Asset Pricing

No Arbitrage $\quad \Longleftrightarrow \quad {\rm Linear \ Pricing}$

- 1. Absence of arbitrage \Rightarrow Linear Pricing: if \boldsymbol{q}_0 is arbitrage free, then $\boldsymbol{q}_0=\boldsymbol{\mu}\boldsymbol{D}$
 - ▶ Proof: Farkas' lemma ⇒ Theorem of the alternative See e.g. Duffie (2001)
- 2. Linear Pricing (with $\mu > 0$) \Rightarrow Absence of arbitrage
 - ▶ Proof: Linear pricing implies that $q_0 = \mu D$, so the pricing of a portfolio is $q_0 a_0 = \mu D a_0$
 - ▶ Therefore if $Da_0 > 0$, and state prices are strictly positive, $\mu > 0$, then $q_0a_0 > 0$, showing that no arbitrage opportunity can exist
- <u>Economic insight</u>: if individuals can freely buy and sell (shorting may be necessary) portfolios of assets, then asset prices must be linear in payoffs
 - Nonlinear pricing gives incentives to combine, slice, and build portfolios of assets to make arbitrage profits
 - Example: popcorn at baseball field

Summary

- ▶ Competitive Equilibrium \Rightarrow Linear Pricing
- ▶ Competitive Equilibrium \Rightarrow Absence of Arbitrage
- \blacktriangleright FTAP: Linear Pricing \iff Absence of Arbitrage
 - Complete markets: unique linear pricing rule
 - ▶ Incomplete markets: many linear pricing rules
- **Remark**: FTAP does not involve equilibrium

Alternative Asset Pricing Formulations

- ▶ Linear pricing yields the Fundamental Asset Pricing Equation
 - ▶ As an equilibrium, or not
- ► Four formulations
 - 1. Stochastic discount factor
 - 2. State prices
 - 3. Risk-neutral probabilities
 - 4. Beta representation

i) Stochastic Discount Factor

$$q_0^z = \sum_s \pi(s) m(s) d_1^z(s) = \mathbb{E}[m(s) d_1^z(s)]$$

- m(s) measures how valuable a payoff is (how hungry agents are)
 m(s) is high, marginal utility is high, bad state
 m(s) is low, marginal utility is low, good state
- ▶ Risk-free asset $(d_1^z(s) = 1) \Rightarrow q^f = \mathbb{E}[m(s)] = \frac{1}{1+r^f}$ (special notation)

$$\begin{aligned} q_0^z &= \mathbb{E}\left[m\left(s\right)\right] \mathbb{E}\left[d_1^z\left(s\right)\right] + \mathbb{C}ov\left[m\left(s\right), d_1^z\left(s\right)\right] \\ &= \underbrace{\frac{\mathbb{E}\left[d_1^z\left(s\right)\right]}{1 + r^f}}_{\text{Discount Expected Payoff}} + \underbrace{\mathbb{C}ov\left[m\left(s\right), d_1^z\left(s\right)\right]}_{\text{Compensation for Risk}} \end{aligned}$$

If Cov [m (s), d¹₁ (s)] > 0 asset is a hedge
 If Cov [m (s), d¹₁ (s)] < 0 asset is risky

ii) State Prices

$$q_{0}^{z}=\sum_{s}\mu\left(s\right)d_{1}^{z}\left(s\right)$$

► State-price (price of A-D security): $\mu(s) = \pi(s) m(s)$

$$q_{0}^{z} = \sum_{s} \underbrace{\pi(s) m(s)}_{=\mu(s)} d_{1}^{z}(s) = \sum_{s} \mu(s) d_{1}^{z}(s)$$

▶ Risk-free rate is $q_0^f = \sum_s \mu(s) = \frac{1}{1+r^f}$

iii) Risk-Neutral Probabilities

$$\begin{split} \boxed{q_0^z} &= \sum_s \mu(s) \, d_1^z(s) = \sum_s \mu(s) \sum_s \underbrace{\frac{=\pi^*(s)}{\mu(s)}}_{s} d_1^z(s) \\ &= \frac{\sum_s \pi^*(s) \, d_1^z(s)}{1 + r^f} = \boxed{\frac{\mathbb{E}^*[d_1^z(s)]}{1 + r^f}} \end{split}$$

•
$$\pi^{\star}(s) = \frac{\mu(s)}{\sum_{s}^{s} \mu(s)}$$
 are called risk-neutral probabilities

They add up to one

They are not physical probabilities

- They can be generated though a change of measure (Radon-Nikodym derivative, see next slide)
- ▶ Why are risk-neutral probabilities useful?
 - Under risk-neutral probabilities, all assets have an expected return equal to the risk-free rate:

$$\frac{\mathbb{E}^{\star}\left[d_{1}^{z}\left(s\right)\right]}{q_{0}^{z}} = 1 + r^{f}, \; \forall z$$

iii) Risk-Neutral Probabilities

• What is the interpretation of $\frac{\pi^*(s)}{\pi(s)}$?

$$\frac{\pi^{\star}\left(s\right)}{\pi\left(s\right)} = \frac{m\left(s\right)}{\mathbb{E}\left[m\left(s\right)\right]} \iff \pi^{\star}\left(s\right) = \frac{m\left(s\right)}{\mathbb{E}\left[m\left(s\right)\right]}\pi\left(s\right)$$

• $\frac{m(s)}{\mathbb{E}[m(s)]}$ is the Radon-Nikodym derivative

• If m(s) is constant, then $\frac{\pi^*(s)}{\pi(s)} = 1$. Otherwise:

- States with low m(s) relative to average (good states), have lower $\pi^{\star}(s)$ relative to $\pi(s)$
- States with high m(s) relative to average (bad states), have higher $\pi^{\star}(s)$ relative to $\pi(s)$
- Bad states are perceived as more likely if we insist on pricing assets by discounting cash flows at the risk-free rate

iv) Beta Representation

$$1 = \mathbb{E}\left[m\left(s\right)\frac{d_{1}^{z}\left(s\right)}{q_{0}^{z}}\right] = \mathbb{E}\left[m\left(s\right)\right]\mathbb{E}\left[R^{z}\left(s\right)\right] + \mathbb{C}ov\left[m\left(s\right), R^{z}\left(s\right)\right]$$

Define $R^{z}\left(s\right) = \frac{d_{1}^{z}\left(s\right)}{q_{0}^{z}}$ and $R^{f} = 1 + r^{f} = \frac{1}{\mathbb{E}\left[m\left(s\right)\right]}$
$$\underbrace{\mathbb{E}\left[R^{z}\left(s\right)\right] - R^{f}}_{\text{Risk Premium}} = -\frac{\mathbb{C}ov\left[m\left(s\right), R^{z}\left(s\right)\right]}{\mathbb{E}\left[m\left(s\right)\right]}$$
$$= \underbrace{\left[\left(-\frac{\mathbb{C}ov\left[m\left(s\right), R^{z}\left(s\right)\right]}{\mathbb{V}ar\left[m\left(s\right)\right]}\right)}_{=\beta^{z} \text{ (Quantity of risk)}} \underbrace{\left(\frac{\mathbb{V}ar\left[m\left(s\right)\right]}{\mathbb{E}\left[m\left(s\right)\right]}\right)}_{=\lambda \text{ (Price of risk)}}$$

- ▶ λ is called "price of risk" (same for all assets)
- ▶ β^z is called "quantity of risk" (regression coefficient)
- Remark: Var [R^z (s)] does not pin down E [R^z (s)] R^f directly
 Covariances matter Cov [m (s), R^z (s)], not variances (!)

Roadmap

- 1. Implications of competitive equilibrium for asset prices
 - Competitive Equilibrium \Rightarrow Linear Pricing
 - ▶ Competitive Equilibrium \Rightarrow No Arbitrage
- 2. Arbitrage pricing: Fundamental Theorem of Asset Pricing
 - ▶ No Arbitrage \iff Linear Pricing
- 3. Fundamental Asset Pricing Equation: several versions
 - i) Stochastic Discount Factor
 - ii) State Prices
 - iii) Risk-Neutral Probabilities
 - iv) Beta Representation
- 4. Extensions
 - Replication: Binomial/Black-Scholes Model
 - Heterogeneous Beliefs
 - Beliefs/Preferences Equivalence
- 5. Application: Consumption Based Asset Pricing
- 6. Application: CAPM (Capital Asset Pricing Model)

Two-date, two-state, two-asset economy: T = 1, S = Z = 2
We seek to price a third asset via *replication*

• Asset 1: stock with price q_0^1 and final prices (or payoffs)

$$q_1^1(1) = hq_0^1$$
 and $q_1^1(2) = \ell q_0^1$

► Asset 2: risk-free rate asset with interest rate

$$1 + r^f = \frac{1}{q_0^2}$$

▶ Absence of arbitrage requires $h > 1 + r^f > \ell > 0$.

• If $1 + r^f > h$, shorting the stock and buying bonds \Rightarrow Arbitrage

- If $1 + r^f < \ell$, borrowing to buy the stock \Rightarrow Arbitrage
- ▶ Payoffs of third asset: $d^{3}(1)$ and $d^{3}(2)$
 - What is the price of this asset q_0^3 ?
- ▶ Are markets complete here?

▶ Replicating portfolio: a^1 shares of the stock and a^2 (face value of the) amount saved

$$a^{1}hq_{0}^{1} + a^{2} = d^{3}(1)$$
 (state $s = 1$)
 $a^{1}\ell q_{0}^{1} + a^{2} = d^{3}(2)$ (state $s = 2$)

Solution to this system:

$$a^{1} = \frac{d^{3}(1) - d^{3}(2)}{hq_{0}^{1} - \ell q_{0}^{1}}$$
 and $a^{2} = \frac{hd^{3}(2) - \ell d^{3}(1)}{h - \ell}$

▶ No arbitrage pricing requires that the price of asset to be replicated, q_0^3 , must equal the value of the replicating portfolio. Therefore

$$q_0^3 = q_0^1 a^1 + q_0^2 a^2 \Rightarrow \left[q_0^3 = \frac{1}{1 + r^f} \left(\pi^* \left(1 \right) d^3 \left(1 \right) + \pi^* \left(2 \right) d^3 \left(2 \right) \right) \right],$$

 π^{*} (1) = 1 + r^f - ℓ / h - ℓ

 π^{*} (1) = 1 - π^{*} (1) = 1 - π^{*} (1)

 μ (1) = 1 + r^f π^{*} (1) and μ (2) = 1 + r^f π^{*} (2) are state prices

$$q_0^3 = \frac{1}{1 + r^f} \left(\pi^{\star} \left(1 \right) d^3 \left(1 \right) + \pi^{\star} \left(2 \right) d^3 \left(2 \right) \right)$$

We have found asset price in terms of q₀¹, h, l, and r^f and payoffs
 This formula can price any third derivative asset
 Become have need to precise a particular probabilities of the states

• **Remark**: no need to specify physical probabilities of the states, $\pi(1)$ and $\pi(2)$ (!!!)

▶ But we cannot separate $\pi(s)$ from $m(s) \Leftarrow \mu(s) = \pi(s) m(s)$

- Say we consider a scenario in which h = 1.2, $\ell = 0.8$, $q_0^f = 20$, and $1 + r^f = 1.12$
- ▶ Third asset is call option with strike X = 23
 - Payoffs are $d^{3}(1) = 1$ and $d^{3}(2) = 0$
- Risk-neutral probabilities are

$$\pi^{\star}(1) = \frac{1.12 - 0.8}{1.2 - 0.8} = 0.8$$
 and $\pi^{\star}(2) = 1 - \pi^{\star}(1) = 0.2$

Option price is

$$q_0^3 = \frac{1}{1.12} \left[0.8 \cdot 1 + 0.2 \cdot 0 \right] = 0.71$$

- The logic underlying Black-Scholes-Merton formula is identical to the replication argument presented here (Black and Scholes, 1973; Merton, 1973)
- The Black-Scholes formula is the continuous time limit of the multi-period version of the pricing equation derived here

Heterogeneous Beliefs

▶ Preferences are now:

$$V^{i} = \sum_{t} \left(\beta^{i}\right)^{t} \sum_{s^{t}} \pi^{i}_{t} \left(s^{t}\right) u^{i} \left(c^{i}_{t} \left(s^{t}\right)\right)$$

Positive results unchanged

▶ Agreement on set of states with πⁱ (s) > 0 (absolute continuity)
 ▶ Note that

$$\pi_{t}\left(s^{t}\right)\tilde{u}^{i}\left(c_{t}^{i}\left(s^{t}\right)\right) = \pi_{t}\left(s^{t}\right)\underbrace{\frac{\pi_{t}^{i}\left(s^{t}\right)}{\pi_{t}\left(s^{t}\right)}u^{i}\left(c_{t}^{i}\left(s^{t}\right)\right)}_{=\tilde{u}^{i}\left(c_{t}^{i}\left(s^{t}\right)\right)}$$

Beliefs/Preferences Equivalence

State prices are

▶ Asset prices can be equally explained by beliefs or preferences

- ▶ Shiller vs. Fama \Rightarrow See Cochrane (2005) or Campbell (2017)
- Purely looking at prices (LHS) cannot settle the debate
- Connection to Sonnenschein-Mantel-Debreu
 - Both results highlight large explanatory power of general equilibrium
 - Excess demand theorem hinges on $I \gg 1$
 - ▶ Beliefs/preferences equivalence applies even when I = 1

Consumption Based Asset Pricing: $I = 1, J = 1, S \ge 1, T \ge 1$

▶ Single-good, single individual endowment economy: I = J = 1Lucas (1978)

▶ I = 1: representative agent \rightarrow drop *i* superscript

Resource constraints automatically imply that

$$c_0 = \bar{y}_0$$
 and $c_1(s) = \bar{y}_1(s)$

• Asset prices (for any asset z):

$$q_{0}^{z} = \beta \sum_{s} \pi\left(s\right) \left(\frac{\bar{y}_{1}\left(s\right)}{\bar{y}_{0}}\right)^{-\gamma} d_{1}^{z}\left(s\right)$$

- Written as a function of (aggregate) endowments, which are primitives
- What is $\mu(s)$? And m(s)?

▶ In an equilibrium model we can separate $\pi(s)$ from m(s)

▶ Lucas *tree* is the particular asset that pays the aggregate endowment $d_1^z(s) = \bar{y}_1(s)$

CAPM: $I > 1, J = 1, S \ge 1, T = 1$

• I > 1, consumption only at date 1

▶ Start from beta representation

$$\mathbb{E}\left[R^{z}\left(s\right)\right] - R^{f} = \underbrace{\left(-\frac{\mathbb{C}ov\left[m\left(s\right), R^{z}\left(s\right)\right]}{\mathbb{V}ar\left[m\left(s\right)\right]}\right)}_{\beta^{z}}\underbrace{\left(\frac{\mathbb{V}ar\left[m\left(s\right)\right]}{\mathbb{E}\left[m\left(s\right)\right]}\right)}_{\lambda}$$

Assume that $m(s) = a - R^M(s)$, where $R^M(s)$ is the return of the *market* portfolio, a portfolio of all assets in the economy

 See e.g. Cochrane (2005) or Ingersoll (1987) for microfoundations (quadratic or CARA preferences)

▶ Note that

$$\beta^{z} = -\frac{\mathbb{C}ov\left[m\left(s\right), R^{z}\left(s\right)\right]}{\mathbb{V}ar\left[m\left(s\right)\right]} = \frac{\mathbb{C}ov\left[R^{M}\left(s\right), R^{z}\left(s\right)\right]}{\mathbb{V}ar\left[R^{M}\left(s\right)\right]}$$

• Applying this expression for the market portfolio, z = M, it must be that $\beta^M = 1$:

$$\mathbb{E}\left[R^{M}\left(s\right)\right] - R^{f} = \frac{\mathbb{V}ar\left[m\left(s\right)\right]}{\mathbb{E}\left[m\left(s\right)\right]} \Rightarrow \lambda$$

CAPM: Intuition

Combining both results, we can derive the SML (security market line) prediction of the CAPM model:

$$\mathbb{E}\left[R^{z}\left(s\right)\right] - R^{f} = \beta^{z}\left(\mathbb{E}\left[R^{M}\left(s\right)\right] - R^{f}\right)$$

▶ The CAPM is derived from investors optimality condition for holding each asset *z*

- Assets with <u>high payoffs/returns in good states</u> (states in which m(s) is low \iff the market return is high) have a high β^z , and should have a low price in equilibrium, or equivalently, a high expected return
 - These are <u>risky</u> assets, investors demand a high expected return to hold these assets in equilibrium
- Assets with high payoffs/returns in bad states (states in which m(s) is high \iff the market return is low) have a low β^z , should have a high price in equilibrium, or equivalently, a low expected return
 - These are <u>hedges</u>, investors demand a low expected return to hold these assets in equilibrium

References I

- BLACK, F., AND M. SCHOLES (1973): "The pricing of options and corporate liabilities," *The journal of political economy*, pp. 637–654.
- CAMPBELL, J. Y. (2017): Financial Decisions and Markets: A Course in Asset Pricing. Princeton University Press.
- COCHRANE, J. (2005): Asset Pricing: (Revised). Princeton University Press, revised edn.
- DUFFIE, D. (2001): Dynamic Asset Pricing Theory, Third Edition. Princeton University Press.
- INGERSOLL, J. E. (1987): Theory of financial decision making. Rowman & Littlefield Pub Inc.
- LUCAS, R. (1978): "Asset prices in an exchange economy," Econometrica: Journal of the Econometric Society, pp. 1429–1445.
- MERTON, R. C. (1973): "Theory of Rational Option Pricing," Bell Journal of Economics and Management Science, 4(1), 141–183.
- SUMMERS, L. H. (1985): "On Economics and Finance," The Journal of Finance, 40(3), 633–635.