ECON 500a General Equilibrium and Welfare Economics Asset Pricing

Eduardo Dávila Yale University

Updated: December 03, 2024

Outline: Dynamic Stochastic Economies

- 1. Dynamic Economics
- 2. Stochastic Economics
- 3. Asset Pricing
- 4. Efficiency and Welfare
- 5. Incomplete Markets
- 6. Production, Firms, Ownership
- ▶ Readings
	- ▶ MWG: Chapter 19
	- ▶ [Duffie \(2001\)](#page-24-0); [Cochrane \(2005\)](#page-24-1); [Campbell \(2017\)](#page-24-2)

Roadmap

- 1. Implications of competitive equilibrium for asset prices
	- ▶ Competitive Equilibrium ⇒ Linear Pricing
	- ▶ Competitive Equilibrium ⇒ No Arbitrage
- 2. Arbitrage pricing: Fundamental Theorem of Asset Pricing
	- ▶ No Arbitrage ⇐⇒ Linear Pricing
- 3. Fundamental Asset Pricing Equation: several versions
	- i) Stochastic Discount Factor
	- ii) State Prices
	- iii) Risk-Neutral Probabilities
	- iv) Beta Representation
- 4. Extensions
	- ▶ Replication: Binomial/Black-Scholes Model
	- ▶ Heterogeneous Beliefs
	- ▶ Beliefs/Preferences Equivalence
- 5. Application: Consumption Based Asset Pricing
- 6. Application: CAPM (Capital Asset Pricing Model)

Competitive Equilibrium implies Linear Pricing

▶ Asset prices in a competitive equilibrium satisfy linear pricing*,* that is, it is possible to find state-prices $\mu(s) > 0$, such that

$$
q_0^z = \sum_s \mu(s) d_1^z(s)
$$

In matrix form, $q_0 = \mu D$, where

$$
\boldsymbol{\mu} = (\mu(1), \ldots, \mu(s), \ldots, \mu(S))
$$

is a vector of state-prices of dimension $1 \times S$

- \blacktriangleright Notation: $\mu(s)$ rather than $\mu_0(s)$
- \triangleright Existence of $\mu(s)$ follows from optimality conditions (Euler equations)

▶ **Remark #1**: Many valid state-prices ⇒ One per individual

▶ Unique state-prices only when markets are complete

▶ **Remark #2**: this result requires having no portfolio constraints

- ▶ No short-selling constraints
- ▶ No borrowing constraints
- \triangleright No collateral constraints

Competitive Equilibrium implies No-Arbitrage

 \blacktriangleright *Absence of arbitrage*: A system of asset prices q_0 is arbitrage free if there is no self-financing portfolio with positive payoffs, that is, if there is no portfolio a_0 such that $q_0a_0 \leq 0$ and $Da_0 \geq 0$ (at least one with strict inequality)

$$
\boldsymbol{D}\boldsymbol{a}_{0} = \left(\begin{array}{c} \sum_{z} d_{1}^{z}(1) a_{0}^{z} \\ \vdots \\ \sum_{z} d_{1}^{z}(s) a_{0}^{z} \\ \vdots \\ \sum_{z} d_{1}^{z}(S) a_{0}^{z} \end{array}\right)_{S \times 1}
$$

- ▶ "No self-financing portfolio has weakly positive payoffs in every state and a strictly positive payoffs in some state"
- \triangleright Absence of arbitrage \rightarrow very weak restriction
	- \blacktriangleright Free-lunches are not available in financial markets
	- ▶ Applies to both complete and incomplete markets
- ▶ Asset prices in a competitive equilibrium satisfy absence of arbitrage
	- ▶ Proof: If preferences are strongly monotone and there are arbitrage opportunities, then individual demands are unbounded and the optimized value of individual problem is ∞

Arbitrage Pricing vs. Equilibrium Pricing

 \triangleright Absence of arbitrage is a property of prices q_0 and payoffs *D*

- ▶ No need to specify preferences (beyond non-satiation), technologies, or equilibrium notion
- ▶ Applies to both complete and incomplete markets
- ▶ No-arbitrage only informs us about relative prices

▶ [Summers \(1985\)](#page-24-3): finance is "ketchup economics", criticizing financial economists methodological focus on arbitrage, neglecting broader economic fundamentals

"There are ketchup economists who have shown that two-quart bottles of ketchup invariably sell for twice as much as one-quart bottles, except for deviations traceable to transaction costs. They conclude that the ketchup market is perfectly efficient. They ignore the forces of supply and demand and other economic fundamentals."

Fundamental Theorem of Asset Pricing

No Arbitrage \iff Linear Pricing

- 1. Absence of arbitrage \Rightarrow Linear Pricing: if q_0 is arbitrage free, then $q_0 = \mu D$
	- ▶ Proof: Farkas' lemma ⇒ Theorem of the alternative See e.g. [Duffie \(2001\)](#page-24-0)
- 2. Linear Pricing (with $\mu > 0$) \Rightarrow Absence of arbitrage
	- ▶ Proof: Linear pricing implies that $q_0 = \mu D$, so the pricing of a portfolio is $q_0a_0 = \mu Da_0$
	- ▶ Therefore if $Da_0 > 0$, and state prices are strictly positive, $\mu > 0$, then $q_0a_0 > 0$, showing that no arbitrage opportunity can exist
- ▶ Economic insight: if individuals can freely buy and sell (shorting may be necessary) portfolios of assets, then asset prices must be linear in payoffs
	- ▶ Nonlinear pricing gives incentives to combine, slice, and build portfolios of assets to make arbitrage profits
	- ▶ Example: popcorn at baseball field

Summary

- ▶ Competitive Equilibrium ⇒ Linear Pricing
- ▶ Competitive Equilibrium \Rightarrow Absence of Arbitrage
- ▶ FTAP: Linear Pricing ⇐⇒ Absence of Arbitrage
	- ▶ Complete markets: unique linear pricing rule
	- ▶ Incomplete markets: many linear pricing rules
- ▶ **Remark**: FTAP does not involve equilibrium

Alternative Asset Pricing Formulations

- ▶ Linear pricing yields the Fundamental Asset Pricing Equation
	- ▶ As an equilibrium, or not
- \blacktriangleright Four formulations
	- 1. Stochastic discount factor
	- 2. State prices
	- 3. Risk-neutral probabilities
	- 4. Beta representation

i) Stochastic Discount Factor

$$
q_0^z = \sum_{s} \pi(s) m(s) d_1^z(s) = \mathbb{E} [m(s) d_1^z(s)]
$$

 \blacktriangleright *m* (*s*) measures how valuable a payoff is (how hungry agents are) \blacktriangleright $m(s)$ is high, marginal utility is high, bad state \blacktriangleright $m(s)$ is low, marginal utility is low, good state

▶ Risk-free asset $(d_1^z(s) = 1)$ \Rightarrow $q^f = \mathbb{E}[m(s)] = \frac{1}{1+r^f}$ (special notation)

$$
q_0^z = \mathbb{E}\left[m\left(s\right)\right]\mathbb{E}\left[d_1^z\left(s\right)\right] + \mathbb{C}ov\left[m\left(s\right), d_1^z\left(s\right)\right]
$$
\n
$$
= \underbrace{\frac{\mathbb{E}\left[d_1^z\left(s\right)\right]}{1+r^f}}_{\text{Discount Expected Payoff}} + \underbrace{\mathbb{C}ov\left[m\left(s\right), d_1^z\left(s\right)\right]}_{\text{Comparison for Risk}}
$$

- ▶ If $\mathbb{C}ov[m(s), d_1^z(s)] > 0$ asset is a hedge
- If $\mathbb{C}ov[m(s), d_1^z(s)] < 0$ asset is risky

ii) State Prices

$$
q_{0}^{z}=\sum_{s}\mu\left(s\right) d_{1}^{z}\left(s\right)
$$

▶ State-price (price of A-D security): $\mu(s) = \pi(s) m(s)$

$$
q_0^z = \sum_s \underbrace{\pi(s) \, m(s)}_{=\mu(s)} d_1^z(s) = \sum_s \mu(s) \, d_1^z(s)
$$

▶ Risk-free rate is $q_0^f = \sum_s \mu(s) = \frac{1}{1+r^f}$

iii) Risk-Neutral Probabilities

$$
\overline{q_0^z} = \sum_s \mu(s) d_1^z(s) = \sum_s \mu(s) \sum_s \frac{\mu(s)}{\sum_s \mu(s)} d_1^z(s)
$$

$$
= \frac{\sum_s \pi^*(s) d_1^z(s)}{1 + r^f} = \frac{\mathbb{E}^* [d_1^z(s)]}{1 + r^f}
$$

$$
\blacktriangleright \pi^{\star}(s) = \frac{\mu(s)}{\sum_{s} \mu(s)}
$$
 are called risk-neutral probabilities

- ▶ They add up to one
- ▶ They are not physical probabilities
- ▶ They can be generated though a change of measure (Radon-Nikodym derivative, see next slide)
- ▶ Why are risk-neutral probabilities useful?
	- ▶ Under risk-neutral probabilities, all assets have an expected return equal to the risk-free rate:

$$
\frac{\mathbb{E}^{\star}\left[d_{1}^{z}\left(s\right)\right]}{q_{0}^{z}}=1+r^{f},\:\forall z
$$

iii) Risk-Neutral Probabilities

▶ What is the interpretation of $\frac{\pi^*(s)}{\pi(s)}$ $\frac{(s)}{\pi(s)}$?

$$
\frac{\pi^{\star}(s)}{\pi(s)} = \frac{m(s)}{\mathbb{E}[m(s)]} \iff \pi^{\star}(s) = \frac{m(s)}{\mathbb{E}[m(s)]}\pi(s)
$$

 \blacktriangleright $\frac{m(s)}{\mathbb{E}[m(s)]}$ is the Radon-Nikodym derivative

▶ If *m*(*s*) is constant, then $\frac{\pi^*(s)}{\pi(s)} = 1$. Otherwise:

- \triangleright States with low $m(s)$ relative to average (good states), have lower $\pi^{\star}(s)$ relative to $\pi(s)$
- \triangleright States with high $m(s)$ relative to average (bad states), have higher $\pi^*(s)$ relative to $\pi(s)$
- ▶ Bad states are perceived as more likely if we insist on pricing assets by discounting cash flows at the risk-free rate

iv) Beta Representation

$$
1 = \mathbb{E}\left[m\left(s\right)\frac{d_1^z\left(s\right)}{q_0^z}\right] = \mathbb{E}\left[m\left(s\right)\right]\mathbb{E}\left[R^z\left(s\right)\right] + \mathbb{C}ov\left[m\left(s\right), R^z\left(s\right)\right]
$$
\nDefine $R^z\left(s\right) = \frac{d_1^z\left(s\right)}{q_0^z}$ and $R^f = 1 + r^f = \frac{1}{\mathbb{E}[m(s)]}$

\n
$$
\boxed{\underbrace{\mathbb{E}\left[R^z\left(s\right)\right] - R^f}_{\text{Risk Premium}} = -\frac{\mathbb{C}ov\left[m\left(s\right), R^z\left(s\right)\right]}{\mathbb{E}\left[m\left(s\right)\right]}}
$$
\n
$$
= \boxed{\underbrace{\left(-\frac{\mathbb{C}ov\left[m\left(s\right), R^z\left(s\right)\right]}{\mathbb{V}ar\left[m\left(s\right)\right]}\right)\underbrace{\left(\frac{\mathbb{V}ar\left[m\left(s\right)\right]}{\mathbb{E}\left[m\left(s\right)\right]}\right)}}_{=\beta^z\left(\text{Quantity of risk}\right)} = \underbrace{\left(\frac{\mathbb{V}ar\left[m\left(s\right)\right]}{\beta}\right)}_{\text{exists}}.
$$

- \triangleright λ is called "price of risk" (same for all assets)
- \triangleright β^z is called "quantity of risk" (regression coefficient)
- ▶ **Remark**: $\mathbb{V}ar[R^z(s)]$ does not pin down $\mathbb{E}[R^z(s)] R^f$ directly
	- \triangleright Covariances matter $\mathbb{C}ov[m(s), R^z(s)]$, not variances (!)

Roadmap

- 1. Implications of competitive equilibrium for asset prices
	- ▶ Competitive Equilibrium ⇒ Linear Pricing
	- ▶ Competitive Equilibrium ⇒ No Arbitrage
- 2. Arbitrage pricing: Fundamental Theorem of Asset Pricing
	- ▶ No Arbitrage ⇐⇒ Linear Pricing
- 3. Fundamental Asset Pricing Equation: several versions
	- i) Stochastic Discount Factor
	- ii) State Prices
	- iii) Risk-Neutral Probabilities
	- iv) Beta Representation
- 4. Extensions
	- ▶ Replication: Binomial/Black-Scholes Model
	- ▶ Heterogeneous Beliefs
	- ▶ Beliefs/Preferences Equivalence
- 5. Application: Consumption Based Asset Pricing
- 6. Application: CAPM (Capital Asset Pricing Model)

 \blacktriangleright Two-date, two-state, two-asset economy: $T = 1, S = Z = 2$ ▶ We seek to price a third asset via *replication*

 \blacktriangleright Asset 1: stock with price q_0^1 and final prices (or payoffs)

$$
q_1^1(1) = hq_0^1
$$
 and $q_1^1(2) = \ell q_0^1$

 \triangleright Asset 2: risk-free rate asset with interest rate

$$
1 + r^f = \frac{1}{q_0^2}
$$

Absence of arbitrage requires $h > 1 + r^f > \ell > 0$.

▶ If $1 + r^f > h$, shorting the stock and buying bonds \Rightarrow Arbitrage

- ▶ If $1 + r^f < \ell$, borrowing to buy the stock \Rightarrow Arbitrage
- \blacktriangleright Payoffs of third asset: d^3 (1) and d^3 (2)
	- \blacktriangleright What is the price of this asset q_0^3 ?
- ▶ Are markets complete here?

 \blacktriangleright Replicating portfolio: a^1 shares of the stock and a^2 (face value of the) amount saved

$$
a^{1}hq_{0}^{1} + a^{2} = d^{3}
$$
 (1) (state $s = 1$)
\n $a^{1} \ell q_{0}^{1} + a^{2} = d^{3}$ (2) (state $s = 2$)

▶ Solution to this system:

$$
a^{1} = \frac{d^{3}(1) - d^{3}(2)}{hq_{0}^{1} - \ell q_{0}^{1}}
$$
 and $a^{2} = \frac{hd^{3}(2) - \ell d^{3}(1)}{h - \ell}$

▶ No arbitrage pricing requires that the price of asset to be replicated, q_0^3 , must equal the value of the replicating portfolio. Therefore

$$
q_0^3 = q_0^1 a^1 + q_0^2 a^2 \Rightarrow \left[q_0^3 = \frac{1}{1+r^f} \left(\pi^* \left(1 \right) d^3 \left(1 \right) + \pi^* \left(2 \right) d^3 \left(2 \right) \right) \right],
$$

\n- \n
$$
\pi^*(1) = \frac{1+r^f - \ell}{h - \ell}
$$
 and $\pi^*(2) = 1 - \pi^*(1) = \frac{h - (1+r^f)}{h - \ell}$ are risk-neutral probabilities\n
\n- \n $\mu(1) = \frac{1}{1+r^f} \pi^*(1)$ and $\mu(2) = \frac{1}{1+r^f} \pi^*(2)$ are state prices\n
\n

$$
q_{0}^{3}=\frac{1}{1+r^{f}}\left(\pi^{\star}\left(1\right) d^{3}\left(1\right) +\pi^{\star}\left(2\right) d^{3}\left(2\right) \right)
$$

▶ We have found asset price in terms of q_0^1 , h , ℓ , and r^f and payoffs ▶ This formula can price any third derivative asset

▶ **Remark**: no need to specify physical probabilities of the states, $\pi(1)$ and $\pi(2)$ (!!!)

▶ But we cannot separate $\pi(s)$ from $m(s) \Leftarrow \mu(s) = \pi(s) m(s)$

- ▶ Say we consider a scenario in which $h = 1.2$, $\ell = 0.8$, $q_0^f = 20$, and $1 + r^f = 1.12$
- \blacktriangleright Third asset is call option with strike $X = 23$
	- Payoffs are $d^3(1) = 1$ and $d^3(2) = 0$
- ▶ Risk-neutral probabilities are

$$
\pi^*(1) = \frac{1.12 - 0.8}{1.2 - 0.8} = 0.8
$$
 and $\pi^*(2) = 1 - \pi^*(1) = 0.2$

▶ Option price is

$$
q_0^3 = \frac{1}{1.12} [0.8 \cdot 1 + 0.2 \cdot 0] = 0.71
$$

- ▶ The logic underlying Black-Scholes-Merton formula is identical to the replication argument presented here [\(Black and Scholes, 1973;](#page-24-4) [Merton, 1973\)](#page-24-5)
- ▶ The Black-Scholes formula is the continuous time limit of the multi-period version of the pricing equation derived here

Heterogeneous Beliefs

▶ Preferences are now:

$$
V^{i} = \sum_{t} \left(\beta^{i}\right)^{t} \sum_{s^{t}} \pi_{t}^{i}\left(s^{t}\right) u^{i}\left(c_{t}^{i}\left(s^{t}\right)\right)
$$

▶ Positive results unchanged

► Agreement on set of states with $\pi^{i}(s) > 0$ (absolute continuity) ▶ Note that

$$
\pi_t\left(s^t\right)\tilde{u}^i\left(c^i_t\left(s^t\right)\right) = \pi_t\left(s^t\right) \underbrace{\frac{\pi^i_t\left(s^t\right)}{\pi_t\left(s^t\right)} u^i\left(c^i_t\left(s^t\right)\right)}_{=\tilde{u}^i\left(c^i_t\left(s^t\right)\right)}
$$

Beliefs/Preferences Equivalence

▶ State prices are

▶ Asset prices can be equally explained by beliefs or preferences

- ▶ Shiller vs. Fama \Rightarrow See [Cochrane \(2005\)](#page-24-1) or [Campbell \(2017\)](#page-24-2)
- ▶ Purely looking at prices (LHS) cannot settle the debate
- ▶ Connection to Sonnenschein-Mantel-Debreu
	- ▶ Both results highlight large explanatory power of general equilibrium
	- ▶ Excess demand theorem hinges on $I \gg 1$
	- \blacktriangleright Beliefs/preferences equivalence applies even when $I=1$

Consumption Based Asset Pricing: $I = 1, J = 1, S \ge 1$, $T \geq 1$

 \triangleright Single-good, single individual endowment economy: $I = J = 1$ [Lucas \(1978\)](#page-24-6)

 \blacktriangleright *I* = 1: representative agent \rightarrow drop *i* superscript

▶ Resource constraints automatically imply that

$$
c_0 = \bar{y}_0 \quad \text{and} \quad c_1(s) = \bar{y}_1(s)
$$

▶ Asset prices (for any asset *z*):

$$
q_{0}^{z} = \beta \sum_{s} \pi(s) \left(\frac{\bar{y}_{1}(s)}{\bar{y}_{0}}\right)^{-\gamma} d_{1}^{z}(s)
$$

- ▶ Written as a function of (aggregate) endowments, which are primitives
- \blacktriangleright What is $\mu(s)$? And $m(s)$?

▶ In an equilibrium model we can separate *π* (*s*) from *m* (*s*)

▶ Lucas *tree* is the particular asset that pays the aggregate endowment $d_1^z(s) = \bar{y}_1(s)$

 $CAPM: I > 1, J = 1, S > 1, T = 1$

 \blacktriangleright *I* > 1, consumption only at date 1

▶ Start from beta representation

$$
\mathbb{E}\left[R^z\left(s\right)\right] - R^f = \underbrace{\left(-\frac{\mathbb{C}ov\left[m\left(s\right), R^z\left(s\right)\right]}{\mathbb{V}ar\left[m\left(s\right)\right]}\right)}_{\beta^z} \underbrace{\left(\frac{\mathbb{V}ar\left[m\left(s\right)\right]}{\mathbb{E}\left[m\left(s\right)\right]}\right)}_{\lambda}
$$

▶ Assume that $m(s) = a - R^M(s)$, where $R^M(s)$ is the return of the *market* portfolio, a portfolio of all assets in the economy

 \triangleright See e.g. [Cochrane \(2005\)](#page-24-1) or [Ingersoll \(1987\)](#page-24-7) for microfoundations (quadratic or CARA preferences)

▶ Note that

$$
\beta^{z}=-\frac{\mathbb{C}ov\left[m\left(s\right),R^{z}\left(s\right)\right]}{\mathbb{V}ar\left[m\left(s\right)\right]}=\frac{\mathbb{C}ov\left[R^{M}\left(s\right),R^{z}\left(s\right)\right]}{\mathbb{V}ar\left[R^{M}\left(s\right)\right]}
$$

 \blacktriangleright Applying this expression for the market portfolio, $z = M$, it must be that $\beta^M = 1$:

$$
\mathbb{E}\left[R^{M}\left(s\right)\right]-R^{f}=\frac{\mathbb{V}ar\left[m\left(s\right)\right]}{\mathbb{E}\left[m\left(s\right)\right]}\Rightarrow\lambda
$$

CAPM: Intuition

▶ Combining both results, we can derive the SML (security market line) prediction of the CAPM model:

$$
\mathbb{E}\left[R^z\left(s\right)\right] - R^f = \beta^z \left(\mathbb{E}\left[R^M\left(s\right)\right] - R^f\right)
$$

▶ The CAPM is derived from investors optimality condition for holding each asset *z*

- ▶ Assets with high payoffs/returns in good states (states in which *m* (*s*) is low $\xrightarrow{\longleftrightarrow}$ the market return is high) have a high β^z , and should have a low price in equilibrium, or equivalently, a high expected return
	- ▶ These are risky assets, investors demand a high expected return to hold these assets in equilibrium
- ▶ Assets with high payoffs/returns in bad states (states in which $m(s)$ is high \iff the market return is low) have a low β^z , should have a high price in equilibrium, or equivalently, a low expected return
	- ▶ These are hedges, investors demand a low expected return to hold these assets in equilibrium

References I

- BLACK, F., AND M. SCHOLES (1973): "The pricing of options and corporate liabilities," *The journal of political economy*, pp. 637–654.
- Campbell, J. Y. (2017): *Financial Decisions and Markets: A Course in Asset Pricing*. Princeton University Press.
- Cochrane, J. (2005): *Asset Pricing: (Revised)*. Princeton University Press, revised edn.
- Duffie, D. (2001): *Dynamic Asset Pricing Theory, Third Edition.* Princeton University Press.
- Ingersoll, J. E. (1987): *Theory of financial decision making*. Rowman & Littlefield Pub Inc.
- Lucas, R. (1978): "Asset prices in an exchange economy," *Econometrica: Journal of the Econometric Society*, pp. 1429–1445.
- Merton, R. C. (1973): "Theory of Rational Option Pricing," *Bell Journal of Economics and Management Science*, 4(1), 141–183.
- Summers, L. H. (1985): "On Economics and Finance," *The Journal of Finance*, 40(3), 633–635.